Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383552225> ?p ?o ?g. }
- W4383552225 endingPage "2482" @default.
- W4383552225 startingPage "2482" @default.
- W4383552225 abstract "Salinity management in estuarine systems is crucial for developing effective water-management strategies to maintain compliance and understand the impact of salt intrusion on water quality and availability. Understanding the temporal and spatial variations of salinity is a keystone of salinity-management practices. Process-based numerical models have been traditionally used to estimate the variations in salinity in estuarine environments. Advances in data-driven models (e.g., deep learning models) make them effective and efficient alternatives to process-based models. However, a discernible research gap exists in applying these advanced techniques to salinity modeling. The current study seeks to address this gap by exploring the innovative use of deep learning with data augmentation and transfer learning in salinity modeling, exemplified at 23 key salinity locations in the Sacramento–San Joaquin Delta which is the hub of the water-supply system of California. Historical, simulated (via a hydrodynamics and water quality model), and perturbed (to create a range of hydroclimatic and operational scenarios for data-augmentation purposes) flow, and salinity data are used to train a baseline multi-layer perceptron (MLP) and a deep learning Residual Long-Short-Term Memory (Res-LSTM) network. Four other deep learning models including LSTM, Residual Network (ResNet), Gated Recurrent Unit (GRU), and Residual GRU (Res-GRU) are also examined. Results indicate that models pre-trained using augmented data demonstrate improved performance over models trained from scratch using only historical data (e.g., median Nash–Sutcliffe efficiency increased from around 0.5 to above 0.9). Moreover, the five deep learning models further boost the salinity estimation performance in comparison with the baseline MLP model, though the performance of the latter is acceptable. The models trained using augmented data are then (a) used to develop a web-based Salinity Dashboard (Dashboard) tool that allows the users (including those with no machine learning background) to quickly screen multiple management scenarios by altering inputs and visualizing the resulting salinity simulations interactively, and (b) transferred and adapted to estimate observed salinity. The study shows that transfer learning results more accurately replicate the observations compared to their counterparts from models trained from scratch without knowledge learned and transferred from augmented data (e.g., median Nash–Sutcliffe efficiency increased from around 0.4 to above 0.9). Overall, the study illustrates that deep learning models, particularly when pre-trained using augmented data, are promising supplements to existing process-based models in estuarine salinity modeling, while the Dashboard enables user engagement with those pre-trained models to inform decision-making efficiently and effectively." @default.
- W4383552225 created "2023-07-08" @default.
- W4383552225 creator A5011347528 @default.
- W4383552225 creator A5015643107 @default.
- W4383552225 creator A5018289454 @default.
- W4383552225 creator A5023772467 @default.
- W4383552225 creator A5023932929 @default.
- W4383552225 creator A5027522440 @default.
- W4383552225 creator A5048675025 @default.
- W4383552225 creator A5053733794 @default.
- W4383552225 creator A5055278262 @default.
- W4383552225 creator A5057933838 @default.
- W4383552225 creator A5067088014 @default.
- W4383552225 creator A5084784478 @default.
- W4383552225 creator A5085794086 @default.
- W4383552225 date "2023-07-06" @default.
- W4383552225 modified "2023-10-10" @default.
- W4383552225 title "Salinity Modeling Using Deep Learning with Data Augmentation and Transfer Learning" @default.
- W4383552225 cites W1981488665 @default.
- W4383552225 cites W2016043834 @default.
- W4383552225 cites W2017748848 @default.
- W4383552225 cites W2034978228 @default.
- W4383552225 cites W2047935330 @default.
- W4383552225 cites W2217164996 @default.
- W4383552225 cites W2477264232 @default.
- W4383552225 cites W2499105982 @default.
- W4383552225 cites W2565300688 @default.
- W4383552225 cites W2600442184 @default.
- W4383552225 cites W2727146607 @default.
- W4383552225 cites W2742196324 @default.
- W4383552225 cites W2757455114 @default.
- W4383552225 cites W2769721953 @default.
- W4383552225 cites W2792129413 @default.
- W4383552225 cites W2891503716 @default.
- W4383552225 cites W2899283552 @default.
- W4383552225 cites W2953958347 @default.
- W4383552225 cites W2990812820 @default.
- W4383552225 cites W2997041748 @default.
- W4383552225 cites W3004759986 @default.
- W4383552225 cites W3012850569 @default.
- W4383552225 cites W3014009018 @default.
- W4383552225 cites W3045219157 @default.
- W4383552225 cites W3095028907 @default.
- W4383552225 cites W3102903231 @default.
- W4383552225 cites W3154650405 @default.
- W4383552225 cites W3181655313 @default.
- W4383552225 cites W3190389261 @default.
- W4383552225 cites W3191026187 @default.
- W4383552225 cites W4214645267 @default.
- W4383552225 cites W4220976956 @default.
- W4383552225 cites W4283575846 @default.
- W4383552225 cites W4308801569 @default.
- W4383552225 cites W4315568004 @default.
- W4383552225 cites W4317739090 @default.
- W4383552225 cites W4321513043 @default.
- W4383552225 cites W4328109542 @default.
- W4383552225 cites W4380839983 @default.
- W4383552225 cites W4381682004 @default.
- W4383552225 doi "https://doi.org/10.3390/w15132482" @default.
- W4383552225 hasPublicationYear "2023" @default.
- W4383552225 type Work @default.
- W4383552225 citedByCount "1" @default.
- W4383552225 countsByYear W43835522252023 @default.
- W4383552225 crossrefType "journal-article" @default.
- W4383552225 hasAuthorship W4383552225A5011347528 @default.
- W4383552225 hasAuthorship W4383552225A5015643107 @default.
- W4383552225 hasAuthorship W4383552225A5018289454 @default.
- W4383552225 hasAuthorship W4383552225A5023772467 @default.
- W4383552225 hasAuthorship W4383552225A5023932929 @default.
- W4383552225 hasAuthorship W4383552225A5027522440 @default.
- W4383552225 hasAuthorship W4383552225A5048675025 @default.
- W4383552225 hasAuthorship W4383552225A5053733794 @default.
- W4383552225 hasAuthorship W4383552225A5055278262 @default.
- W4383552225 hasAuthorship W4383552225A5057933838 @default.
- W4383552225 hasAuthorship W4383552225A5067088014 @default.
- W4383552225 hasAuthorship W4383552225A5084784478 @default.
- W4383552225 hasAuthorship W4383552225A5085794086 @default.
- W4383552225 hasBestOaLocation W43835522251 @default.
- W4383552225 hasConcept C108583219 @default.
- W4383552225 hasConcept C111368507 @default.
- W4383552225 hasConcept C11413529 @default.
- W4383552225 hasConcept C119857082 @default.
- W4383552225 hasConcept C127313418 @default.
- W4383552225 hasConcept C127413603 @default.
- W4383552225 hasConcept C129513315 @default.
- W4383552225 hasConcept C150899416 @default.
- W4383552225 hasConcept C154945302 @default.
- W4383552225 hasConcept C155512373 @default.
- W4383552225 hasConcept C187320778 @default.
- W4383552225 hasConcept C39432304 @default.
- W4383552225 hasConcept C41008148 @default.
- W4383552225 hasConcept C50644808 @default.
- W4383552225 hasConcept C60908668 @default.
- W4383552225 hasConcept C67186912 @default.
- W4383552225 hasConcept C76886044 @default.
- W4383552225 hasConcept C77088390 @default.
- W4383552225 hasConceptScore W4383552225C108583219 @default.
- W4383552225 hasConceptScore W4383552225C111368507 @default.