Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383552643> ?p ?o ?g. }
- W4383552643 endingPage "291" @default.
- W4383552643 startingPage "291" @default.
- W4383552643 abstract "Transthoracic impedance values have not been widely used to measure extravascular pulmonary water content due to accuracy and complexity concerns. Our aim was to develop a foundational model for a novel system aiming to non-invasively estimate the intrathoracic condition of heart failure patients.We employed multi-frequency bioelectrical impedance analysis to simultaneously measure multiple frequencies, collecting electrical, physical, and hematological data from 63 hospitalized heart failure patients and 82 healthy volunteers. Measurements were taken upon admission and after treatment, and longitudinal analysis was conducted.Using a light gradient boosting machine, and a decision tree-based machine learning method, we developed an intrathoracic estimation model based on electrical measurements and clinical findings. Out of the 286 features collected, the model utilized 16 features. Notably, the developed model demonstrated high accuracy in discriminating patients with pleural effusion, achieving an area under the receiver characteristic curves (AUC) of 0.905 (95% CI: 0.870-0.940, p < 0.0001) in the cross-validation test. The accuracy significantly outperformed the conventional frequency-based method with an AUC of 0.740 (95% CI: 0.688-0.792, and p < 0.0001).Our findings indicate the potential of machine learning and transthoracic impedance measurements for estimating pleural effusion. By incorporating noninvasive and easily obtainable clinical and laboratory findings, this approach offers an effective means of assessing intrathoracic conditions." @default.
- W4383552643 created "2023-07-08" @default.
- W4383552643 creator A5010712555 @default.
- W4383552643 creator A5011128904 @default.
- W4383552643 creator A5019740585 @default.
- W4383552643 creator A5020260218 @default.
- W4383552643 creator A5027042061 @default.
- W4383552643 creator A5042879777 @default.
- W4383552643 creator A5053709094 @default.
- W4383552643 creator A5071767668 @default.
- W4383552643 date "2023-07-07" @default.
- W4383552643 modified "2023-09-26" @default.
- W4383552643 title "Development of Machine Learning-Based Web System for Estimating Pleural Effusion Using Multi-Frequency Bioelectrical Impedance Analyses" @default.
- W4383552643 cites W103328257 @default.
- W4383552643 cites W1504239888 @default.
- W4383552643 cites W1827931243 @default.
- W4383552643 cites W2019566662 @default.
- W4383552643 cites W2032959495 @default.
- W4383552643 cites W2056046734 @default.
- W4383552643 cites W2065733970 @default.
- W4383552643 cites W2068457134 @default.
- W4383552643 cites W2069656926 @default.
- W4383552643 cites W2088042433 @default.
- W4383552643 cites W2091605819 @default.
- W4383552643 cites W2098920479 @default.
- W4383552643 cites W2101713668 @default.
- W4383552643 cites W2106441816 @default.
- W4383552643 cites W2125640901 @default.
- W4383552643 cites W2140482095 @default.
- W4383552643 cites W2141005052 @default.
- W4383552643 cites W2141659719 @default.
- W4383552643 cites W2162066049 @default.
- W4383552643 cites W2165041914 @default.
- W4383552643 cites W2166595242 @default.
- W4383552643 cites W2169918959 @default.
- W4383552643 cites W2279417950 @default.
- W4383552643 cites W2297711716 @default.
- W4383552643 cites W2415012384 @default.
- W4383552643 cites W2466752206 @default.
- W4383552643 cites W2521001430 @default.
- W4383552643 cites W2610602137 @default.
- W4383552643 cites W2766351735 @default.
- W4383552643 cites W2888589263 @default.
- W4383552643 cites W2900277959 @default.
- W4383552643 cites W2964965300 @default.
- W4383552643 cites W2970852766 @default.
- W4383552643 cites W3012766895 @default.
- W4383552643 cites W3039658232 @default.
- W4383552643 cites W3107286473 @default.
- W4383552643 cites W3111681667 @default.
- W4383552643 cites W3135118734 @default.
- W4383552643 cites W3140652166 @default.
- W4383552643 cites W3187097531 @default.
- W4383552643 cites W4206717838 @default.
- W4383552643 cites W4210771046 @default.
- W4383552643 cites W4210937888 @default.
- W4383552643 cites W4221075831 @default.
- W4383552643 cites W4224443987 @default.
- W4383552643 cites W4237155685 @default.
- W4383552643 cites W4239861201 @default.
- W4383552643 cites W4287307772 @default.
- W4383552643 cites W4293469511 @default.
- W4383552643 cites W4311515934 @default.
- W4383552643 cites W4318485521 @default.
- W4383552643 doi "https://doi.org/10.3390/jcdd10070291" @default.
- W4383552643 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37504547" @default.
- W4383552643 hasPublicationYear "2023" @default.
- W4383552643 type Work @default.
- W4383552643 citedByCount "0" @default.
- W4383552643 crossrefType "journal-article" @default.
- W4383552643 hasAuthorship W4383552643A5010712555 @default.
- W4383552643 hasAuthorship W4383552643A5011128904 @default.
- W4383552643 hasAuthorship W4383552643A5019740585 @default.
- W4383552643 hasAuthorship W4383552643A5020260218 @default.
- W4383552643 hasAuthorship W4383552643A5027042061 @default.
- W4383552643 hasAuthorship W4383552643A5042879777 @default.
- W4383552643 hasAuthorship W4383552643A5053709094 @default.
- W4383552643 hasAuthorship W4383552643A5071767668 @default.
- W4383552643 hasBestOaLocation W43835526431 @default.
- W4383552643 hasConcept C119599485 @default.
- W4383552643 hasConcept C119857082 @default.
- W4383552643 hasConcept C12267149 @default.
- W4383552643 hasConcept C126322002 @default.
- W4383552643 hasConcept C126838900 @default.
- W4383552643 hasConcept C127413603 @default.
- W4383552643 hasConcept C154945302 @default.
- W4383552643 hasConcept C169258074 @default.
- W4383552643 hasConcept C17829176 @default.
- W4383552643 hasConcept C2779634585 @default.
- W4383552643 hasConcept C2780221984 @default.
- W4383552643 hasConcept C33872192 @default.
- W4383552643 hasConcept C41008148 @default.
- W4383552643 hasConcept C70153297 @default.
- W4383552643 hasConcept C71924100 @default.
- W4383552643 hasConcept C84525736 @default.
- W4383552643 hasConceptScore W4383552643C119599485 @default.
- W4383552643 hasConceptScore W4383552643C119857082 @default.
- W4383552643 hasConceptScore W4383552643C12267149 @default.