Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383553908> ?p ?o ?g. }
- W4383553908 endingPage "3013" @default.
- W4383553908 startingPage "3013" @default.
- W4383553908 abstract "The decomposition integrals of set-valued functions with regards to fuzzy measures are introduced in a natural way. These integrals are an extension of the decomposition integral for real-valued functions and include several types of set-valued integrals, such as the Aumann integral based on the classical Lebesgue integral, the set-valued Choquet, pan-, concave and Shilkret integrals of set-valued functions with regard to capacity, etc. Some basic properties are presented and the monotonicity of the integrals in the sense of different types of the preorder relations are shown. By means of the monotonicity, the Chebyshev inequalities of decomposition integrals for set-valued functions are established. As a special case, we show the linearity of concave integrals of set-valued functions in terms of the equivalence relation based on a kind of preorder. The coincidences among the set-valued Choquet, the set-valued pan-integral and the set-valued concave integral are presented." @default.
- W4383553908 created "2023-07-08" @default.
- W4383553908 creator A5049712846 @default.
- W4383553908 creator A5057830124 @default.
- W4383553908 creator A5068811764 @default.
- W4383553908 date "2023-07-06" @default.
- W4383553908 modified "2023-09-26" @default.
- W4383553908 title "Decomposition Integrals of Set-Valued Functions Based on Fuzzy Measures" @default.
- W4383553908 cites W1964851817 @default.
- W4383553908 cites W1967229060 @default.
- W4383553908 cites W1997679081 @default.
- W4383553908 cites W2009302212 @default.
- W4383553908 cites W2012706073 @default.
- W4383553908 cites W2019155031 @default.
- W4383553908 cites W2021244475 @default.
- W4383553908 cites W2027151675 @default.
- W4383553908 cites W2032730762 @default.
- W4383553908 cites W2033810643 @default.
- W4383553908 cites W2040789133 @default.
- W4383553908 cites W2054478650 @default.
- W4383553908 cites W2077431745 @default.
- W4383553908 cites W2092851543 @default.
- W4383553908 cites W2105494915 @default.
- W4383553908 cites W2108097047 @default.
- W4383553908 cites W2156134284 @default.
- W4383553908 cites W2216479871 @default.
- W4383553908 cites W2268571485 @default.
- W4383553908 cites W2550301631 @default.
- W4383553908 cites W2581542111 @default.
- W4383553908 cites W2624867735 @default.
- W4383553908 cites W2726491432 @default.
- W4383553908 cites W2795036138 @default.
- W4383553908 cites W2902474114 @default.
- W4383553908 cites W2912287056 @default.
- W4383553908 cites W2913276252 @default.
- W4383553908 cites W2946570450 @default.
- W4383553908 cites W2972485784 @default.
- W4383553908 cites W3120144943 @default.
- W4383553908 cites W3159017097 @default.
- W4383553908 cites W3212328460 @default.
- W4383553908 cites W4206453793 @default.
- W4383553908 cites W4210267320 @default.
- W4383553908 cites W4290975547 @default.
- W4383553908 cites W4294755860 @default.
- W4383553908 cites W4295277097 @default.
- W4383553908 cites W4296200386 @default.
- W4383553908 cites W4366144502 @default.
- W4383553908 cites W4381384206 @default.
- W4383553908 cites W610008432 @default.
- W4383553908 cites W988900036 @default.
- W4383553908 doi "https://doi.org/10.3390/math11133013" @default.
- W4383553908 hasPublicationYear "2023" @default.
- W4383553908 type Work @default.
- W4383553908 citedByCount "0" @default.
- W4383553908 crossrefType "journal-article" @default.
- W4383553908 hasAuthorship W4383553908A5049712846 @default.
- W4383553908 hasAuthorship W4383553908A5057830124 @default.
- W4383553908 hasAuthorship W4383553908A5068811764 @default.
- W4383553908 hasBestOaLocation W43835539081 @default.
- W4383553908 hasConcept C112799922 @default.
- W4383553908 hasConcept C118615104 @default.
- W4383553908 hasConcept C124681953 @default.
- W4383553908 hasConcept C134306372 @default.
- W4383553908 hasConcept C136119220 @default.
- W4383553908 hasConcept C138885662 @default.
- W4383553908 hasConcept C14158598 @default.
- W4383553908 hasConcept C15312841 @default.
- W4383553908 hasConcept C177264268 @default.
- W4383553908 hasConcept C18903297 @default.
- W4383553908 hasConcept C199360897 @default.
- W4383553908 hasConcept C202444582 @default.
- W4383553908 hasConcept C2333172 @default.
- W4383553908 hasConcept C28826006 @default.
- W4383553908 hasConcept C33923547 @default.
- W4383553908 hasConcept C41008148 @default.
- W4383553908 hasConcept C41895202 @default.
- W4383553908 hasConcept C58166 @default.
- W4383553908 hasConcept C72169020 @default.
- W4383553908 hasConcept C86803240 @default.
- W4383553908 hasConceptScore W4383553908C112799922 @default.
- W4383553908 hasConceptScore W4383553908C118615104 @default.
- W4383553908 hasConceptScore W4383553908C124681953 @default.
- W4383553908 hasConceptScore W4383553908C134306372 @default.
- W4383553908 hasConceptScore W4383553908C136119220 @default.
- W4383553908 hasConceptScore W4383553908C138885662 @default.
- W4383553908 hasConceptScore W4383553908C14158598 @default.
- W4383553908 hasConceptScore W4383553908C15312841 @default.
- W4383553908 hasConceptScore W4383553908C177264268 @default.
- W4383553908 hasConceptScore W4383553908C18903297 @default.
- W4383553908 hasConceptScore W4383553908C199360897 @default.
- W4383553908 hasConceptScore W4383553908C202444582 @default.
- W4383553908 hasConceptScore W4383553908C2333172 @default.
- W4383553908 hasConceptScore W4383553908C28826006 @default.
- W4383553908 hasConceptScore W4383553908C33923547 @default.
- W4383553908 hasConceptScore W4383553908C41008148 @default.
- W4383553908 hasConceptScore W4383553908C41895202 @default.
- W4383553908 hasConceptScore W4383553908C58166 @default.
- W4383553908 hasConceptScore W4383553908C72169020 @default.