Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383558888> ?p ?o ?g. }
Showing items 1 to 47 of
47
with 100 items per page.
- W4383558888 abstract "<strong class=journal-contentHeaderColor>Abstract.</strong> Random and spatial Cross-Validation (CV) methods are commonly used to evaluate machine learning-based spatial prediction models, and the obtained performance values are often interpreted as map accuracy estimates. However, the appropriateness of such approaches is currently the subject of controversy. For the common case where no probability sample for validation purposes is available, in Milà et al. (2022) we proposed the Nearest Neighbour Distance Matching (NNDM) Leave-One-Out (LOO) CV method. This method produces a distribution of geographical Nearest Neighbour Distances (NND) between test and train locations during CV that matches the distribution of NND between prediction and training locations. Hence, it creates predictive conditions during CV that are comparable to what is required when predicting a defined area. Although NNDM LOO CV produced largely reliable map accuracy estimates in our analysis, as a LOO-based method, it cannot be applied to large datasets found in many studies. Here, we propose a novel k-fold CV strategy for map accuracy estimation inspired by the concepts of NNDM LOO CV: the k-fold NNDM (kNNDM) CV. The kNNDM algorithm tries to find a k-fold configuration such that the Empirical Cumulative Distribution Function (ECDF) of NND between test and train locations during CV is matched to the ECDF of NND between prediction and training locations. We tested kNNDM CV in a simulation study with different sampling distributions and compared it to other CV methods including NNDM LOO CV. We found that kNNDM CV performed similarly to NNDM LOO CV and produced reasonably reliable map accuracy estimates across sampling patterns with strong reductions in computation time for large sample sizes. Furthermore, we found a positive linear association between the quality of the match of the two ECDFs in kNNDM and the reliability of the map accuracy estimates. kNNDM provided the advantages of our original NNDM LOO CV strategy while bypassing its sample size limitations." @default.
- W4383558888 created "2023-07-08" @default.
- W4383558888 date "2023-07-07" @default.
- W4383558888 modified "2023-10-17" @default.
- W4383558888 title "Comment on egusphere-2023-1308" @default.
- W4383558888 doi "https://doi.org/10.5194/egusphere-2023-1308-cc1" @default.
- W4383558888 hasPublicationYear "2023" @default.
- W4383558888 type Work @default.
- W4383558888 citedByCount "0" @default.
- W4383558888 crossrefType "peer-review" @default.
- W4383558888 hasBestOaLocation W43835588881 @default.
- W4383558888 hasConcept C105795698 @default.
- W4383558888 hasConcept C119857082 @default.
- W4383558888 hasConcept C125453309 @default.
- W4383558888 hasConcept C153180895 @default.
- W4383558888 hasConcept C154945302 @default.
- W4383558888 hasConcept C164126121 @default.
- W4383558888 hasConcept C165064840 @default.
- W4383558888 hasConcept C27181475 @default.
- W4383558888 hasConcept C33923547 @default.
- W4383558888 hasConcept C41008148 @default.
- W4383558888 hasConceptScore W4383558888C105795698 @default.
- W4383558888 hasConceptScore W4383558888C119857082 @default.
- W4383558888 hasConceptScore W4383558888C125453309 @default.
- W4383558888 hasConceptScore W4383558888C153180895 @default.
- W4383558888 hasConceptScore W4383558888C154945302 @default.
- W4383558888 hasConceptScore W4383558888C164126121 @default.
- W4383558888 hasConceptScore W4383558888C165064840 @default.
- W4383558888 hasConceptScore W4383558888C27181475 @default.
- W4383558888 hasConceptScore W4383558888C33923547 @default.
- W4383558888 hasConceptScore W4383558888C41008148 @default.
- W4383558888 hasLocation W43835588881 @default.
- W4383558888 hasOpenAccess W4383558888 @default.
- W4383558888 hasPrimaryLocation W43835588881 @default.
- W4383558888 hasRelatedWork W2033914206 @default.
- W4383558888 hasRelatedWork W2046077695 @default.
- W4383558888 hasRelatedWork W2083542484 @default.
- W4383558888 hasRelatedWork W2102298087 @default.
- W4383558888 hasRelatedWork W2146076056 @default.
- W4383558888 hasRelatedWork W2163831990 @default.
- W4383558888 hasRelatedWork W2552050053 @default.
- W4383558888 hasRelatedWork W3003836766 @default.
- W4383558888 hasRelatedWork W3014826520 @default.
- W4383558888 hasRelatedWork W3133324635 @default.
- W4383558888 isParatext "false" @default.
- W4383558888 isRetracted "false" @default.
- W4383558888 workType "peer-review" @default.