Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383560904> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W4383560904 endingPage "198" @default.
- W4383560904 startingPage "193" @default.
- W4383560904 abstract "Although the application of network security protocols and cryptography provides a certain security guarantee for Internet surfing, it is difficult to cure the persistent security problems. Driven by the promotion of e-mail technology and benefits, bad businesses will also issue promotional emails indiscriminately to a large number of mailboxes, and even drive the underground industry of private mailbox information trading. The existing spam filters use black and whitelists, sensitive word matching and other technologies, but they can not effectively filter all forms of spam, and non-spam is often filtered, which brings more trouble to users. With the rise of artificial intelligence, machine learning algorithms have been applied to spam recognition, such as decision tree algorithm, Boosting algorithm, K nearest neighbour algorithm, SVM support vector machine algorithm, Bayesian principle related algorithms, etc. These methods based on traditional statistics can intelligently classify data sets with large differences and are often used together with expert systems with certain rules to classify spam. However, with the diversification of spam types, the old classification rules are relatively rigid, and new types of mail will be misjudged. In addition, statistics based natural language processing method is based on pre trained fixed dictionaries. For new words and polysemy words, it is impossible to give word vectors with accurate semantics, which brings difficulties to classification. This paper mainly studies the application of five machine learning algorithms in spam detection: improved naive Bayes algorithm, A Lite Bidirectional Encoder Representations from Transformer (ALBERT) dynamic word vector algorithm, Bidirectional Gating Recurrent Unit (BiGRU) algorithm, the Inverted Multi-Index with Weighted Naive Bayes (IMI-WNB) algorithm and clustering analysis algorithm." @default.
- W4383560904 created "2023-07-08" @default.
- W4383560904 creator A5005717209 @default.
- W4383560904 date "2023-06-14" @default.
- W4383560904 modified "2023-10-07" @default.
- W4383560904 title "Comparison of algorithms that use deep learning to classify spam" @default.
- W4383560904 doi "https://doi.org/10.54254/2755-2721/5/20230560" @default.
- W4383560904 hasPublicationYear "2023" @default.
- W4383560904 type Work @default.
- W4383560904 citedByCount "0" @default.
- W4383560904 crossrefType "journal-article" @default.
- W4383560904 hasAuthorship W4383560904A5005717209 @default.
- W4383560904 hasConcept C110083411 @default.
- W4383560904 hasConcept C11413529 @default.
- W4383560904 hasConcept C119857082 @default.
- W4383560904 hasConcept C12267149 @default.
- W4383560904 hasConcept C124101348 @default.
- W4383560904 hasConcept C13672336 @default.
- W4383560904 hasConcept C154945302 @default.
- W4383560904 hasConcept C41008148 @default.
- W4383560904 hasConcept C52001869 @default.
- W4383560904 hasConcept C84525736 @default.
- W4383560904 hasConceptScore W4383560904C110083411 @default.
- W4383560904 hasConceptScore W4383560904C11413529 @default.
- W4383560904 hasConceptScore W4383560904C119857082 @default.
- W4383560904 hasConceptScore W4383560904C12267149 @default.
- W4383560904 hasConceptScore W4383560904C124101348 @default.
- W4383560904 hasConceptScore W4383560904C13672336 @default.
- W4383560904 hasConceptScore W4383560904C154945302 @default.
- W4383560904 hasConceptScore W4383560904C41008148 @default.
- W4383560904 hasConceptScore W4383560904C52001869 @default.
- W4383560904 hasConceptScore W4383560904C84525736 @default.
- W4383560904 hasIssue "1" @default.
- W4383560904 hasLocation W43835609041 @default.
- W4383560904 hasOpenAccess W4383560904 @default.
- W4383560904 hasPrimaryLocation W43835609041 @default.
- W4383560904 hasRelatedWork W3014664599 @default.
- W4383560904 hasRelatedWork W3127425528 @default.
- W4383560904 hasRelatedWork W3161569253 @default.
- W4383560904 hasRelatedWork W3186233728 @default.
- W4383560904 hasRelatedWork W3204641204 @default.
- W4383560904 hasRelatedWork W4200324007 @default.
- W4383560904 hasRelatedWork W4283016678 @default.
- W4383560904 hasRelatedWork W4283836538 @default.
- W4383560904 hasRelatedWork W4316082230 @default.
- W4383560904 hasRelatedWork W4377964522 @default.
- W4383560904 hasVolume "5" @default.
- W4383560904 isParatext "false" @default.
- W4383560904 isRetracted "false" @default.
- W4383560904 workType "article" @default.