Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383603018> ?p ?o ?g. }
- W4383603018 endingPage "171" @default.
- W4383603018 startingPage "149" @default.
- W4383603018 abstract "Hyper spectral image (HI) classification models have been contributing in a wide spectrum of real-world applications ranging from human-need based applications to global safety issues with core concepts of classification, segmentation, anomaly detection and prediction. The use of DL on satellite images and to achieve best performance, the research is swiftly trending from traditional machine learning to deep learning approaches. In this chapter, first we discuss the narratives of HI, source of satellite images and the role of deep learning based classification on sentinel-2 satellite HI data using 3D-CNN and validated the ground truth. In the latter part, we propose a hybrid multi-scale-spinal-net-DL technique (Hybrid MSSN) that can address some of key issues. The ensemble model comprises with multi-scale CNN and spinal fully connected network (SFCN) to classify the Hyperspectral satellite image. Along with that, we demonstrate how the combination of 3D-CNNs and 2D-CNN play its significance in extracting the characteristics of spectral and spatial features of HI, in addition to the Principal Component Analysis (PCA) based spectral band isolations [15]. The role of SFCN or spinal net in our model to reduce the process of global mapping with an aim for fast response and reduced computing effort in the activation function of NNs. Investigations on three common datasets showed considerable classification accuracy in comparison to four related models, despite the fact that there were few training samples, noise, and class imbalance concerns. Experimental outcomes through Python libraries in Google-Colab platform demonstrate that in comparison with other discussed models, our models consistently achieve better accuracy in all classes with 99.16% in case of 30% training without oversampling and 99.99% in case of with oversampling." @default.
- W4383603018 created "2023-07-08" @default.
- W4383603018 creator A5017610833 @default.
- W4383603018 creator A5049170041 @default.
- W4383603018 creator A5058067098 @default.
- W4383603018 date "2023-01-01" @default.
- W4383603018 modified "2023-10-18" @default.
- W4383603018 title "Hyperspectral Images: A Succinct Analytical Deep Learning Study" @default.
- W4383603018 cites W1506662060 @default.
- W4383603018 cites W1585144779 @default.
- W4383603018 cites W1966580635 @default.
- W4383603018 cites W1976359033 @default.
- W4383603018 cites W197865394 @default.
- W4383603018 cites W1980511770 @default.
- W4383603018 cites W2000563363 @default.
- W4383603018 cites W2001298023 @default.
- W4383603018 cites W2029316659 @default.
- W4383603018 cites W2043665634 @default.
- W4383603018 cites W2062803458 @default.
- W4383603018 cites W2076397897 @default.
- W4383603018 cites W2080114453 @default.
- W4383603018 cites W2097900616 @default.
- W4383603018 cites W2098057602 @default.
- W4383603018 cites W2106777458 @default.
- W4383603018 cites W2114819256 @default.
- W4383603018 cites W2115451191 @default.
- W4383603018 cites W2117741752 @default.
- W4383603018 cites W2131438174 @default.
- W4383603018 cites W2136922672 @default.
- W4383603018 cites W2161673872 @default.
- W4383603018 cites W2169549452 @default.
- W4383603018 cites W2176950688 @default.
- W4383603018 cites W2278837653 @default.
- W4383603018 cites W2548791488 @default.
- W4383603018 cites W2572303978 @default.
- W4383603018 cites W2578936920 @default.
- W4383603018 cites W2764276316 @default.
- W4383603018 cites W2765904812 @default.
- W4383603018 cites W2767074788 @default.
- W4383603018 cites W2783036871 @default.
- W4383603018 cites W2788919449 @default.
- W4383603018 cites W2793272303 @default.
- W4383603018 cites W2794284562 @default.
- W4383603018 cites W2801877832 @default.
- W4383603018 cites W2803552875 @default.
- W4383603018 cites W2888715336 @default.
- W4383603018 cites W2891189889 @default.
- W4383603018 cites W2894337953 @default.
- W4383603018 cites W2901384620 @default.
- W4383603018 cites W2914331134 @default.
- W4383603018 cites W2941141441 @default.
- W4383603018 cites W2998460251 @default.
- W4383603018 cites W3007420480 @default.
- W4383603018 cites W3008737806 @default.
- W4383603018 cites W3010667832 @default.
- W4383603018 cites W3031015423 @default.
- W4383603018 cites W3048814722 @default.
- W4383603018 cites W3105357426 @default.
- W4383603018 cites W3106141888 @default.
- W4383603018 cites W3128524549 @default.
- W4383603018 cites W3129501191 @default.
- W4383603018 cites W3192883256 @default.
- W4383603018 cites W4200120391 @default.
- W4383603018 cites W4212793231 @default.
- W4383603018 cites W4220861376 @default.
- W4383603018 cites W4226141369 @default.
- W4383603018 cites W4226400517 @default.
- W4383603018 cites W4285138211 @default.
- W4383603018 cites W4285182859 @default.
- W4383603018 cites W4285183673 @default.
- W4383603018 cites W4292865658 @default.
- W4383603018 cites W4312756480 @default.
- W4383603018 doi "https://doi.org/10.1007/978-981-99-3784-4_8" @default.
- W4383603018 hasPublicationYear "2023" @default.
- W4383603018 type Work @default.
- W4383603018 citedByCount "0" @default.
- W4383603018 crossrefType "book-chapter" @default.
- W4383603018 hasAuthorship W4383603018A5017610833 @default.
- W4383603018 hasAuthorship W4383603018A5049170041 @default.
- W4383603018 hasAuthorship W4383603018A5058067098 @default.
- W4383603018 hasConcept C108583219 @default.
- W4383603018 hasConcept C111919701 @default.
- W4383603018 hasConcept C119857082 @default.
- W4383603018 hasConcept C146849305 @default.
- W4383603018 hasConcept C153180895 @default.
- W4383603018 hasConcept C154945302 @default.
- W4383603018 hasConcept C159078339 @default.
- W4383603018 hasConcept C41008148 @default.
- W4383603018 hasConcept C519991488 @default.
- W4383603018 hasConcept C739882 @default.
- W4383603018 hasConceptScore W4383603018C108583219 @default.
- W4383603018 hasConceptScore W4383603018C111919701 @default.
- W4383603018 hasConceptScore W4383603018C119857082 @default.
- W4383603018 hasConceptScore W4383603018C146849305 @default.
- W4383603018 hasConceptScore W4383603018C153180895 @default.
- W4383603018 hasConceptScore W4383603018C154945302 @default.
- W4383603018 hasConceptScore W4383603018C159078339 @default.
- W4383603018 hasConceptScore W4383603018C41008148 @default.