Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383612861> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4383612861 endingPage "100308" @default.
- W4383612861 startingPage "100308" @default.
- W4383612861 abstract "Analysis of volatile organic compounds (VOCs) can be an effective strategy to inspect the quality of horticultural commodities and following their degradation. In this work, we report that VOCs emitted by walnuts can be studied using gas chromatography-differential mobility spectrometry (GC-DMS), and those GC-DMS data can be analyzed to predict the rancidity of walnuts, i.e., classify walnuts into grades of freshness. Walnut kernels were assigned a class n depending on their level of freshness as determined by a peroxide assay. VOC samples were analyzed using GC-DMS. From these VOC data, a partial least square regression (PLSR) model provided a freshness prediction value m, which corresponded to the rancid class n when m=n±0.5. The PLSR model had an accuracy of 80% to predict walnut grade and demonstrated a minimal root mean squared error of 0.42 for the m response variables (representative of walnut grade) with the GC-DMS data. We also conducted gas chromatography-mass spectrometry (GC-MS) experiments to identify volatiles that emerged or were enhanced with more rancid walnuts. The findings of the GC-MS study of walnut VOCs align excellently with the GC-DMS study. Based on our results, we conclude that a GC-DMS device deployed with a pre-trained machine learning model can be a very effective device for classifying walnut grades in the industry." @default.
- W4383612861 created "2023-07-09" @default.
- W4383612861 creator A5018808044 @default.
- W4383612861 creator A5021179869 @default.
- W4383612861 creator A5027646420 @default.
- W4383612861 creator A5044029053 @default.
- W4383612861 creator A5064227935 @default.
- W4383612861 creator A5071310220 @default.
- W4383612861 creator A5078064010 @default.
- W4383612861 date "2023-12-01" @default.
- W4383612861 modified "2023-10-14" @default.
- W4383612861 title "Non-destructive method to classify walnut kernel freshness from volatile organic compound (VOC) emissions using gas chromatography-differential mobility spectrometry (GC-DMS) and machine learning analysis" @default.
- W4383612861 cites W1971574029 @default.
- W4383612861 cites W1974933208 @default.
- W4383612861 cites W1977067612 @default.
- W4383612861 cites W1986805350 @default.
- W4383612861 cites W1995696769 @default.
- W4383612861 cites W2028076237 @default.
- W4383612861 cites W2036448638 @default.
- W4383612861 cites W2037519759 @default.
- W4383612861 cites W2039082895 @default.
- W4383612861 cites W2045346768 @default.
- W4383612861 cites W2074374610 @default.
- W4383612861 cites W2079115619 @default.
- W4383612861 cites W2092773423 @default.
- W4383612861 cites W2133654042 @default.
- W4383612861 cites W2397561100 @default.
- W4383612861 cites W2626541286 @default.
- W4383612861 cites W2732270502 @default.
- W4383612861 cites W2734648490 @default.
- W4383612861 cites W2885129878 @default.
- W4383612861 cites W2951950759 @default.
- W4383612861 cites W2958525943 @default.
- W4383612861 cites W2989631904 @default.
- W4383612861 cites W3006803132 @default.
- W4383612861 cites W3034380899 @default.
- W4383612861 cites W3197479531 @default.
- W4383612861 cites W4291538828 @default.
- W4383612861 doi "https://doi.org/10.1016/j.afres.2023.100308" @default.
- W4383612861 hasPublicationYear "2023" @default.
- W4383612861 type Work @default.
- W4383612861 citedByCount "0" @default.
- W4383612861 crossrefType "journal-article" @default.
- W4383612861 hasAuthorship W4383612861A5018808044 @default.
- W4383612861 hasAuthorship W4383612861A5021179869 @default.
- W4383612861 hasAuthorship W4383612861A5027646420 @default.
- W4383612861 hasAuthorship W4383612861A5044029053 @default.
- W4383612861 hasAuthorship W4383612861A5064227935 @default.
- W4383612861 hasAuthorship W4383612861A5071310220 @default.
- W4383612861 hasAuthorship W4383612861A5078064010 @default.
- W4383612861 hasBestOaLocation W43836128611 @default.
- W4383612861 hasConcept C105795698 @default.
- W4383612861 hasConcept C123460561 @default.
- W4383612861 hasConcept C162356407 @default.
- W4383612861 hasConcept C178790620 @default.
- W4383612861 hasConcept C185592680 @default.
- W4383612861 hasConcept C205345274 @default.
- W4383612861 hasConcept C22354355 @default.
- W4383612861 hasConcept C2778150766 @default.
- W4383612861 hasConcept C33923547 @default.
- W4383612861 hasConcept C43617362 @default.
- W4383612861 hasConceptScore W4383612861C105795698 @default.
- W4383612861 hasConceptScore W4383612861C123460561 @default.
- W4383612861 hasConceptScore W4383612861C162356407 @default.
- W4383612861 hasConceptScore W4383612861C178790620 @default.
- W4383612861 hasConceptScore W4383612861C185592680 @default.
- W4383612861 hasConceptScore W4383612861C205345274 @default.
- W4383612861 hasConceptScore W4383612861C22354355 @default.
- W4383612861 hasConceptScore W4383612861C2778150766 @default.
- W4383612861 hasConceptScore W4383612861C33923547 @default.
- W4383612861 hasConceptScore W4383612861C43617362 @default.
- W4383612861 hasIssue "2" @default.
- W4383612861 hasLocation W43836128611 @default.
- W4383612861 hasOpenAccess W4383612861 @default.
- W4383612861 hasPrimaryLocation W43836128611 @default.
- W4383612861 hasRelatedWork W1989457222 @default.
- W4383612861 hasRelatedWork W2004898030 @default.
- W4383612861 hasRelatedWork W2080276667 @default.
- W4383612861 hasRelatedWork W2087362512 @default.
- W4383612861 hasRelatedWork W2158863190 @default.
- W4383612861 hasRelatedWork W2299922318 @default.
- W4383612861 hasRelatedWork W2331429111 @default.
- W4383612861 hasRelatedWork W2357177934 @default.
- W4383612861 hasRelatedWork W2394200052 @default.
- W4383612861 hasRelatedWork W2770989956 @default.
- W4383612861 hasVolume "3" @default.
- W4383612861 isParatext "false" @default.
- W4383612861 isRetracted "false" @default.
- W4383612861 workType "article" @default.