Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383616650> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4383616650 endingPage "120966" @default.
- W4383616650 startingPage "120966" @default.
- W4383616650 abstract "Survival Analysis is essential in the manufacturing field to determine unnecessary events by the input data. In Survival analysis, predictive maintenance plays a major portion in the identification of machine failures based on incoming input data from diverse equipment or sensors. Therefore, the Deep learning method is exploited for barbarizing the issues of predictive maintenance marginally but these techniques are not quite useful to predict the failure of devices for certain input data which the technique had not learned. Meanwhile, the neural network techniques are capable of predicting the output in accordance with the preceding input feature, the performance was poor when the input features have large variations. As a result, the transformation of input data degrades the performance of the neural network and the algorithm does not support the prediction of machine failure. To overcome such drawback, this paper proposes a novel Sugeno Fuzzy Ensemble Convolutional based War Strategy Algorithm (SFEC-WSA) to classify the device and identify the survival time in accordance with the input features. The proposed SFEC system integrates the process of both the Sugeno fuzzy integral ensemble model and the Attention-based Bidirectional CNN-RNN Deep Model (ABCDM). The SFEC-WSA algorithm is applicable in learning diverse input feature variations thereby predicting the robustness of the input data. The proposed SFEC-WSA analyses several parameters such as vibration, rotation, voltage, and pressure to evaluate the condition of the equipment. The experimentation results revealed that the proposed model effectively predicts large test data and performs better than other approaches." @default.
- W4383616650 created "2023-07-09" @default.
- W4383616650 creator A5017486231 @default.
- W4383616650 creator A5036562324 @default.
- W4383616650 creator A5062308876 @default.
- W4383616650 creator A5092427974 @default.
- W4383616650 date "2023-12-01" @default.
- W4383616650 modified "2023-10-06" @default.
- W4383616650 title "A novel survival analysis of machine using fuzzy ensemble convolutional based optimal RNN" @default.
- W4383616650 cites W1972904341 @default.
- W4383616650 cites W2921485464 @default.
- W4383616650 cites W2928673187 @default.
- W4383616650 cites W2930553605 @default.
- W4383616650 cites W2940689983 @default.
- W4383616650 cites W2956533281 @default.
- W4383616650 cites W2966498743 @default.
- W4383616650 cites W2991151034 @default.
- W4383616650 cites W2998335114 @default.
- W4383616650 cites W3000311037 @default.
- W4383616650 cites W3003402209 @default.
- W4383616650 cites W3008227503 @default.
- W4383616650 cites W3011327820 @default.
- W4383616650 cites W3011812967 @default.
- W4383616650 cites W3048619770 @default.
- W4383616650 cites W3081987387 @default.
- W4383616650 cites W3087004455 @default.
- W4383616650 cites W3094704314 @default.
- W4383616650 cites W3134923396 @default.
- W4383616650 cites W3138644639 @default.
- W4383616650 cites W3194846429 @default.
- W4383616650 cites W3204450165 @default.
- W4383616650 cites W3213038192 @default.
- W4383616650 cites W4214638371 @default.
- W4383616650 cites W4214873614 @default.
- W4383616650 cites W4282966661 @default.
- W4383616650 cites W4294733204 @default.
- W4383616650 cites W4303649629 @default.
- W4383616650 cites W4307040799 @default.
- W4383616650 cites W4321014599 @default.
- W4383616650 cites W4360820227 @default.
- W4383616650 cites W4361216580 @default.
- W4383616650 doi "https://doi.org/10.1016/j.eswa.2023.120966" @default.
- W4383616650 hasPublicationYear "2023" @default.
- W4383616650 type Work @default.
- W4383616650 citedByCount "0" @default.
- W4383616650 crossrefType "journal-article" @default.
- W4383616650 hasAuthorship W4383616650A5017486231 @default.
- W4383616650 hasAuthorship W4383616650A5036562324 @default.
- W4383616650 hasAuthorship W4383616650A5062308876 @default.
- W4383616650 hasAuthorship W4383616650A5092427974 @default.
- W4383616650 hasConcept C104317684 @default.
- W4383616650 hasConcept C119857082 @default.
- W4383616650 hasConcept C119898033 @default.
- W4383616650 hasConcept C124101348 @default.
- W4383616650 hasConcept C147168706 @default.
- W4383616650 hasConcept C153180895 @default.
- W4383616650 hasConcept C154945302 @default.
- W4383616650 hasConcept C185592680 @default.
- W4383616650 hasConcept C41008148 @default.
- W4383616650 hasConcept C50644808 @default.
- W4383616650 hasConcept C55493867 @default.
- W4383616650 hasConcept C58166 @default.
- W4383616650 hasConcept C63479239 @default.
- W4383616650 hasConcept C81363708 @default.
- W4383616650 hasConceptScore W4383616650C104317684 @default.
- W4383616650 hasConceptScore W4383616650C119857082 @default.
- W4383616650 hasConceptScore W4383616650C119898033 @default.
- W4383616650 hasConceptScore W4383616650C124101348 @default.
- W4383616650 hasConceptScore W4383616650C147168706 @default.
- W4383616650 hasConceptScore W4383616650C153180895 @default.
- W4383616650 hasConceptScore W4383616650C154945302 @default.
- W4383616650 hasConceptScore W4383616650C185592680 @default.
- W4383616650 hasConceptScore W4383616650C41008148 @default.
- W4383616650 hasConceptScore W4383616650C50644808 @default.
- W4383616650 hasConceptScore W4383616650C55493867 @default.
- W4383616650 hasConceptScore W4383616650C58166 @default.
- W4383616650 hasConceptScore W4383616650C63479239 @default.
- W4383616650 hasConceptScore W4383616650C81363708 @default.
- W4383616650 hasLocation W43836166501 @default.
- W4383616650 hasOpenAccess W4383616650 @default.
- W4383616650 hasPrimaryLocation W43836166501 @default.
- W4383616650 hasRelatedWork W1847088711 @default.
- W4383616650 hasRelatedWork W1889624880 @default.
- W4383616650 hasRelatedWork W2229372569 @default.
- W4383616650 hasRelatedWork W2953061907 @default.
- W4383616650 hasRelatedWork W2964335273 @default.
- W4383616650 hasRelatedWork W3032952384 @default.
- W4383616650 hasRelatedWork W3034302643 @default.
- W4383616650 hasRelatedWork W3036642985 @default.
- W4383616650 hasRelatedWork W4225394202 @default.
- W4383616650 hasRelatedWork W4298287631 @default.
- W4383616650 hasVolume "234" @default.
- W4383616650 isParatext "false" @default.
- W4383616650 isRetracted "false" @default.
- W4383616650 workType "article" @default.