Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383646104> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4383646104 endingPage "8" @default.
- W4383646104 startingPage "1" @default.
- W4383646104 abstract "Image processing has enabled faster and more accurate image classification. It has been of great benefit to the health industry. Manually examining medical images like MRI and X-rays can be very time-consuming, more prone to human error, and way more costly. One such examination is the Pap smear exam, where the cervical cells are examined in laboratory settings to distinguish healthy cervical cells from abnormal cells, thus indicating early signs of cervical cancer. In this paper, we propose a convolutional neural network- (CNN-) based cervical cell classification using the publicly available SIPaKMeD dataset having five cell categories: superficial-intermediate, parabasal, koilocytotic, metaplastic, and dyskeratotic. CNN distinguishes between healthy cervical cells, cells with precancerous abnormalities, and benign cells. Pap smear images were segmented, and a deep CNN using four convolutional layers was applied to the augmented images of cervical cells obtained from Pap smear slides. A simple yet efficient CNN is proposed that yields an accuracy of 0.9113% and can be successfully used to classify cervical cells. A simple architecture that yields a reasonably good accuracy can increase the speed of diagnosis and decrease the response time, reducing the computation cost. Future researchers can build upon this model to improve the model’s accuracy to get a faster and more accurate prediction." @default.
- W4383646104 created "2023-07-09" @default.
- W4383646104 creator A5000028489 @default.
- W4383646104 creator A5011944197 @default.
- W4383646104 creator A5029625566 @default.
- W4383646104 creator A5045221683 @default.
- W4383646104 creator A5047609451 @default.
- W4383646104 creator A5061444542 @default.
- W4383646104 creator A5087641073 @default.
- W4383646104 date "2023-07-08" @default.
- W4383646104 modified "2023-09-26" @default.
- W4383646104 title "Privacy Preserved Cervical Cancer Detection Using Convolutional Neural Networks Applied to Pap Smear Images" @default.
- W4383646104 cites W2807263159 @default.
- W4383646104 cites W2809254203 @default.
- W4383646104 cites W2892046320 @default.
- W4383646104 cites W2906079289 @default.
- W4383646104 cites W2914337210 @default.
- W4383646104 cites W2957705595 @default.
- W4383646104 cites W2972574169 @default.
- W4383646104 cites W2974028681 @default.
- W4383646104 cites W2974328964 @default.
- W4383646104 cites W2999211502 @default.
- W4383646104 cites W3008663655 @default.
- W4383646104 cites W3015870511 @default.
- W4383646104 cites W3084798277 @default.
- W4383646104 cites W3085802240 @default.
- W4383646104 cites W3118603985 @default.
- W4383646104 cites W3136420378 @default.
- W4383646104 cites W3157477640 @default.
- W4383646104 cites W3177549357 @default.
- W4383646104 cites W3185739539 @default.
- W4383646104 cites W4200360249 @default.
- W4383646104 cites W4213173579 @default.
- W4383646104 cites W4225302882 @default.
- W4383646104 cites W4281777492 @default.
- W4383646104 cites W4283707062 @default.
- W4383646104 cites W4285684920 @default.
- W4383646104 doi "https://doi.org/10.1155/2023/9676206" @default.
- W4383646104 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37455684" @default.
- W4383646104 hasPublicationYear "2023" @default.
- W4383646104 type Work @default.
- W4383646104 citedByCount "0" @default.
- W4383646104 crossrefType "journal-article" @default.
- W4383646104 hasAuthorship W4383646104A5000028489 @default.
- W4383646104 hasAuthorship W4383646104A5011944197 @default.
- W4383646104 hasAuthorship W4383646104A5029625566 @default.
- W4383646104 hasAuthorship W4383646104A5045221683 @default.
- W4383646104 hasAuthorship W4383646104A5047609451 @default.
- W4383646104 hasAuthorship W4383646104A5061444542 @default.
- W4383646104 hasAuthorship W4383646104A5087641073 @default.
- W4383646104 hasBestOaLocation W43836461041 @default.
- W4383646104 hasConcept C108583219 @default.
- W4383646104 hasConcept C121608353 @default.
- W4383646104 hasConcept C126322002 @default.
- W4383646104 hasConcept C142724271 @default.
- W4383646104 hasConcept C153180895 @default.
- W4383646104 hasConcept C154945302 @default.
- W4383646104 hasConcept C2776117191 @default.
- W4383646104 hasConcept C2778220009 @default.
- W4383646104 hasConcept C2780647465 @default.
- W4383646104 hasConcept C2993522905 @default.
- W4383646104 hasConcept C41008148 @default.
- W4383646104 hasConcept C71924100 @default.
- W4383646104 hasConcept C81363708 @default.
- W4383646104 hasConceptScore W4383646104C108583219 @default.
- W4383646104 hasConceptScore W4383646104C121608353 @default.
- W4383646104 hasConceptScore W4383646104C126322002 @default.
- W4383646104 hasConceptScore W4383646104C142724271 @default.
- W4383646104 hasConceptScore W4383646104C153180895 @default.
- W4383646104 hasConceptScore W4383646104C154945302 @default.
- W4383646104 hasConceptScore W4383646104C2776117191 @default.
- W4383646104 hasConceptScore W4383646104C2778220009 @default.
- W4383646104 hasConceptScore W4383646104C2780647465 @default.
- W4383646104 hasConceptScore W4383646104C2993522905 @default.
- W4383646104 hasConceptScore W4383646104C41008148 @default.
- W4383646104 hasConceptScore W4383646104C71924100 @default.
- W4383646104 hasConceptScore W4383646104C81363708 @default.
- W4383646104 hasLocation W43836461041 @default.
- W4383646104 hasLocation W43836461042 @default.
- W4383646104 hasLocation W43836461043 @default.
- W4383646104 hasOpenAccess W4383646104 @default.
- W4383646104 hasPrimaryLocation W43836461041 @default.
- W4383646104 hasRelatedWork W2075748006 @default.
- W4383646104 hasRelatedWork W2084859860 @default.
- W4383646104 hasRelatedWork W2159516075 @default.
- W4383646104 hasRelatedWork W2371280768 @default.
- W4383646104 hasRelatedWork W2387348744 @default.
- W4383646104 hasRelatedWork W2514422468 @default.
- W4383646104 hasRelatedWork W2810956257 @default.
- W4383646104 hasRelatedWork W3165329794 @default.
- W4383646104 hasRelatedWork W4300014067 @default.
- W4383646104 hasRelatedWork W4307561562 @default.
- W4383646104 hasVolume "2023" @default.
- W4383646104 isParatext "false" @default.
- W4383646104 isRetracted "false" @default.
- W4383646104 workType "article" @default.