Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383671727> ?p ?o ?g. }
- W4383671727 endingPage "234" @default.
- W4383671727 startingPage "223" @default.
- W4383671727 abstract "Growing clinical evidence suggests a correlation between diabetes and more frequent and severe intervertebral disc failure, partially attributed to accelerated advanced glycation end-products (AGE) accumulation in the annulus fibrosus (AF) through non-enzymatic glycation. However, in vitro glycation (i.e., crosslinking) reportedly improved AF uniaxial tensile mechanical properties, contradicting clinical observations. Thus, this study used a combined experimental-computational approach to evaluate the effect of AGEs on anisotropic AF tensile mechanics, applying finite element models (FEMs) to complement experimental testing and examine difficult-to-measure subtissue-level mechanics. Methylglyoxal-based treatments were applied to induce three physiologically relevant AGE levels in vitro. Models incorporated crosslinks by adapting our previously validated structure-based FEM framework. Experimental results showed that a threefold increase in AGE content resulted in a ∼55% increase in AF circumferential-radial tensile modulus and failure stress and a 40% increase in radial failure stress. Failure strain was unaffected by non-enzymatic glycation. Adapted FEMs accurately predicted experimental AF mechanics with glycation. Model predictions showed that glycation increased stresses in the extrafibrillar matrix under physiologic deformations, which may increase tissue mechanical failure or trigger catabolic remodeling, providing insight into the relationship between AGE accumulation and increased tissue failure. Our findings also added to the existing literature regarding crosslinking structures, indicating that AGEs had a greater effect along the fiber direction, while interlamellar radial crosslinks were improbable in the AF. In summary, the combined approach presented a powerful tool for examining multiscale structure-function relationships with disease progression in fiber-reinforced soft tissues, which is essential for developing effective therapeutic measures. STATEMENT OF SIGNIFICANCE: Increasing clinical evidence correlates diabetes with premature intervertebral disc failure, likely due to advanced glycation end-products (AGE) accumulation in the annulus fibrosus (AF). However, in vitro glycation reportedly increases AF tensile stiffness and toughness, contradicting clinical observations. Using a combined experimental-computational approach, our work shows that increases in AF bulk tensile mechanical properties with glycation are achieved at the risk of exposing the extrafibrillar matrix to increased stresses under physiologic deformations, which may increase tissue mechanical failure or trigger catabolic remodeling. Computational results indicate that crosslinks along the fiber direction account for 90% of the increased tissue stiffness with glycation, adding to the existing literature. These findings provide insight into the multiscale structure-function relationship between AGE accumulation and tissue failure." @default.
- W4383671727 created "2023-07-09" @default.
- W4383671727 creator A5007561239 @default.
- W4383671727 creator A5024343815 @default.
- W4383671727 creator A5042709863 @default.
- W4383671727 creator A5079024178 @default.
- W4383671727 creator A5085704725 @default.
- W4383671727 date "2023-09-01" @default.
- W4383671727 modified "2023-10-14" @default.
- W4383671727 title "Non-enzymatic glycation increases the failure risk of annulus fibrosus by predisposing the extrafibrillar matrix to greater stresses" @default.
- W4383671727 cites W1485761504 @default.
- W4383671727 cites W1891132560 @default.
- W4383671727 cites W1966686938 @default.
- W4383671727 cites W1968722331 @default.
- W4383671727 cites W1972066775 @default.
- W4383671727 cites W1975155903 @default.
- W4383671727 cites W1975456946 @default.
- W4383671727 cites W1978259282 @default.
- W4383671727 cites W1978753330 @default.
- W4383671727 cites W1985175525 @default.
- W4383671727 cites W1991897750 @default.
- W4383671727 cites W1998566831 @default.
- W4383671727 cites W2002650281 @default.
- W4383671727 cites W2003781253 @default.
- W4383671727 cites W2003867975 @default.
- W4383671727 cites W2004451065 @default.
- W4383671727 cites W2004832169 @default.
- W4383671727 cites W2007398955 @default.
- W4383671727 cites W2007413067 @default.
- W4383671727 cites W2013056225 @default.
- W4383671727 cites W2013259546 @default.
- W4383671727 cites W2013480635 @default.
- W4383671727 cites W2013706775 @default.
- W4383671727 cites W2016742056 @default.
- W4383671727 cites W2017140271 @default.
- W4383671727 cites W2017950984 @default.
- W4383671727 cites W2024703813 @default.
- W4383671727 cites W2024942482 @default.
- W4383671727 cites W2028703531 @default.
- W4383671727 cites W2041997771 @default.
- W4383671727 cites W2042470556 @default.
- W4383671727 cites W2045200773 @default.
- W4383671727 cites W2048318576 @default.
- W4383671727 cites W2050314111 @default.
- W4383671727 cites W2050730463 @default.
- W4383671727 cites W2054221638 @default.
- W4383671727 cites W2059100011 @default.
- W4383671727 cites W2072897441 @default.
- W4383671727 cites W2072936530 @default.
- W4383671727 cites W2075076411 @default.
- W4383671727 cites W2077418782 @default.
- W4383671727 cites W2081148596 @default.
- W4383671727 cites W2084536221 @default.
- W4383671727 cites W2092071763 @default.
- W4383671727 cites W2095485681 @default.
- W4383671727 cites W2122482878 @default.
- W4383671727 cites W2133115356 @default.
- W4383671727 cites W2138774341 @default.
- W4383671727 cites W2152983876 @default.
- W4383671727 cites W2160734325 @default.
- W4383671727 cites W2167810128 @default.
- W4383671727 cites W2171171939 @default.
- W4383671727 cites W2171361305 @default.
- W4383671727 cites W2185494723 @default.
- W4383671727 cites W2338167986 @default.
- W4383671727 cites W2518854129 @default.
- W4383671727 cites W2576276064 @default.
- W4383671727 cites W2719539080 @default.
- W4383671727 cites W2752274546 @default.
- W4383671727 cites W2770127110 @default.
- W4383671727 cites W2790106198 @default.
- W4383671727 cites W2793514460 @default.
- W4383671727 cites W2847331478 @default.
- W4383671727 cites W2899535160 @default.
- W4383671727 cites W2938173180 @default.
- W4383671727 cites W2968358927 @default.
- W4383671727 cites W2983266323 @default.
- W4383671727 cites W3004993805 @default.
- W4383671727 cites W3014648668 @default.
- W4383671727 cites W3088819633 @default.
- W4383671727 cites W3089213956 @default.
- W4383671727 cites W3115343418 @default.
- W4383671727 cites W3119730766 @default.
- W4383671727 cites W3168527400 @default.
- W4383671727 cites W3208312197 @default.
- W4383671727 cites W3216065309 @default.
- W4383671727 cites W4210755692 @default.
- W4383671727 cites W4249475676 @default.
- W4383671727 cites W4291016667 @default.
- W4383671727 cites W86433974 @default.
- W4383671727 cites W975426301 @default.
- W4383671727 doi "https://doi.org/10.1016/j.actbio.2023.07.003" @default.
- W4383671727 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37433360" @default.
- W4383671727 hasPublicationYear "2023" @default.
- W4383671727 type Work @default.
- W4383671727 citedByCount "0" @default.
- W4383671727 crossrefType "journal-article" @default.
- W4383671727 hasAuthorship W4383671727A5007561239 @default.