Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383676236> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4383676236 abstract "Purpose Depression is a mental health problem characterized by a persistent sense of sadness and loss of interest. EEG signals are regarded as the most appropriate instruments for diagnosing depression because they reflect the operating status of the human brain. The purpose of this study is the early detection of depression among people using EEG signals. Design/methodology/approach (i) Artifacts are removed by filtering and linear and non-linear features are extracted; (ii) feature scaling is done using a standard scalar while principal component analysis (PCA) is used for feature reduction; (iii) the linear, non-linear and combination of both (only for those whose accuracy is highest) are taken for further analysis where some ML and DL classifiers are applied for the classification of depression; and (iv) in this study, total 15 distinct ML and DL methods, including KNN, SVM, bagging SVM, RF, GB, Extreme Gradient Boosting, MNB, Adaboost, Bagging RF, BootAgg, Gaussian NB, RNN, 1DCNN, RBFNN and LSTM, that have been effectively utilized as classifiers to handle a variety of real-world issues. Findings 1. Among all, alpha, alpha asymmetry, gamma and gamma asymmetry give the best results in linear features, while RWE, DFA, CD and AE give the best results in non-linear feature. 2. In the linear features, gamma and alpha asymmetry have given 99.98% accuracy for Bagging RF, while gamma asymmetry has given 99.98% accuracy for BootAgg. 3. For non-linear features, it has been shown 99.84% of accuracy for RWE and DFA in RF, 99.97% accuracy for DFA in XGBoost and 99.94% accuracy for RWE in BootAgg. 4. By using DL, in linear features, gamma asymmetry has given more than 96% accuracy in RNN and 91% accuracy in LSTM and for non-linear features, 89% accuracy has been achieved for CD and AE in LSTM. 5. By combining linear and non-linear features, the highest accuracy was achieved in Bagging RF (98.50%) gamma asymmetry + RWE. In DL, Alpha + RWE, Gamma asymmetry + CD and gamma asymmetry + RWE have achieved 98% accuracy in LSTM. Originality/value A novel dataset was collected from the Central Institute of Psychiatry (CIP), Ranchi which was recorded using a 128-channels whereas major previous studies used fewer channels; the details of the study participants are summarized and a model is developed for statistical analysis using N-way ANOVA; artifacts are removed by high and low pass filtering of epoch data followed by re-referencing and independent component analysis for noise removal; linear features, namely, band power and interhemispheric asymmetry and non-linear features, namely, relative wavelet energy, wavelet entropy, Approximate entropy, sample entropy, detrended fluctuation analysis and correlation dimension are extracted; this model utilizes Epoch (213,072) for 5 s EEG data, which allows the model to train for longer, thereby increasing the efficiency of classifiers. Features scaling is done using a standard scalar rather than normalization because it helps increase the accuracy of the models (especially for deep learning algorithms) while PCA is used for feature reduction; the linear, non-linear and combination of both features are taken for extensive analysis in conjunction with ML and DL classifiers for the classification of depression. The combination of linear and non-linear features (only for those whose accuracy is highest) is used for the best detection results." @default.
- W4383676236 created "2023-07-09" @default.
- W4383676236 creator A5014097753 @default.
- W4383676236 creator A5021954227 @default.
- W4383676236 creator A5035112179 @default.
- W4383676236 creator A5050534655 @default.
- W4383676236 creator A5067539498 @default.
- W4383676236 date "2023-07-11" @default.
- W4383676236 modified "2023-09-25" @default.
- W4383676236 title "Machine learning and deep learning-based advanced classification techniques for the detection of major depressive disorder" @default.
- W4383676236 cites W1851464347 @default.
- W4383676236 cites W2027182170 @default.
- W4383676236 cites W2064675550 @default.
- W4383676236 cites W2088794999 @default.
- W4383676236 cites W2105957367 @default.
- W4383676236 cites W2144998526 @default.
- W4383676236 cites W2145958727 @default.
- W4383676236 cites W2480861568 @default.
- W4383676236 cites W2734935247 @default.
- W4383676236 cites W2763238567 @default.
- W4383676236 cites W2789348411 @default.
- W4383676236 cites W2885839206 @default.
- W4383676236 cites W2887501928 @default.
- W4383676236 cites W2942441318 @default.
- W4383676236 cites W2984432074 @default.
- W4383676236 cites W2989631814 @default.
- W4383676236 cites W2996393987 @default.
- W4383676236 cites W2999699421 @default.
- W4383676236 cites W2999987832 @default.
- W4383676236 cites W3004161400 @default.
- W4383676236 cites W3026469046 @default.
- W4383676236 cites W3034818547 @default.
- W4383676236 cites W3044957499 @default.
- W4383676236 cites W3084148624 @default.
- W4383676236 cites W3094120200 @default.
- W4383676236 cites W3121117531 @default.
- W4383676236 cites W3136378322 @default.
- W4383676236 cites W3185834864 @default.
- W4383676236 cites W4220931217 @default.
- W4383676236 cites W4312425580 @default.
- W4383676236 doi "https://doi.org/10.1108/ajim-10-2022-0468" @default.
- W4383676236 hasPublicationYear "2023" @default.
- W4383676236 type Work @default.
- W4383676236 citedByCount "0" @default.
- W4383676236 crossrefType "journal-article" @default.
- W4383676236 hasAuthorship W4383676236A5014097753 @default.
- W4383676236 hasAuthorship W4383676236A5021954227 @default.
- W4383676236 hasAuthorship W4383676236A5035112179 @default.
- W4383676236 hasAuthorship W4383676236A5050534655 @default.
- W4383676236 hasAuthorship W4383676236A5067539498 @default.
- W4383676236 hasConcept C119857082 @default.
- W4383676236 hasConcept C12267149 @default.
- W4383676236 hasConcept C138885662 @default.
- W4383676236 hasConcept C139532973 @default.
- W4383676236 hasConcept C141404830 @default.
- W4383676236 hasConcept C153180895 @default.
- W4383676236 hasConcept C154945302 @default.
- W4383676236 hasConcept C169258074 @default.
- W4383676236 hasConcept C27438332 @default.
- W4383676236 hasConcept C2776401178 @default.
- W4383676236 hasConcept C33923547 @default.
- W4383676236 hasConcept C41008148 @default.
- W4383676236 hasConcept C41895202 @default.
- W4383676236 hasConcept C46686674 @default.
- W4383676236 hasConcept C69738355 @default.
- W4383676236 hasConcept C70153297 @default.
- W4383676236 hasConcept C70518039 @default.
- W4383676236 hasConceptScore W4383676236C119857082 @default.
- W4383676236 hasConceptScore W4383676236C12267149 @default.
- W4383676236 hasConceptScore W4383676236C138885662 @default.
- W4383676236 hasConceptScore W4383676236C139532973 @default.
- W4383676236 hasConceptScore W4383676236C141404830 @default.
- W4383676236 hasConceptScore W4383676236C153180895 @default.
- W4383676236 hasConceptScore W4383676236C154945302 @default.
- W4383676236 hasConceptScore W4383676236C169258074 @default.
- W4383676236 hasConceptScore W4383676236C27438332 @default.
- W4383676236 hasConceptScore W4383676236C2776401178 @default.
- W4383676236 hasConceptScore W4383676236C33923547 @default.
- W4383676236 hasConceptScore W4383676236C41008148 @default.
- W4383676236 hasConceptScore W4383676236C41895202 @default.
- W4383676236 hasConceptScore W4383676236C46686674 @default.
- W4383676236 hasConceptScore W4383676236C69738355 @default.
- W4383676236 hasConceptScore W4383676236C70153297 @default.
- W4383676236 hasConceptScore W4383676236C70518039 @default.
- W4383676236 hasLocation W43836762361 @default.
- W4383676236 hasOpenAccess W4383676236 @default.
- W4383676236 hasPrimaryLocation W43836762361 @default.
- W4383676236 hasRelatedWork W1996541855 @default.
- W4383676236 hasRelatedWork W2574487889 @default.
- W4383676236 hasRelatedWork W2955385375 @default.
- W4383676236 hasRelatedWork W3100297620 @default.
- W4383676236 hasRelatedWork W3195168932 @default.
- W4383676236 hasRelatedWork W3211193619 @default.
- W4383676236 hasRelatedWork W4296081764 @default.
- W4383676236 hasRelatedWork W4297107051 @default.
- W4383676236 hasRelatedWork W4320484903 @default.
- W4383676236 hasRelatedWork W4379536929 @default.
- W4383676236 isParatext "false" @default.
- W4383676236 isRetracted "false" @default.
- W4383676236 workType "article" @default.