Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383704247> ?p ?o ?g. }
- W4383704247 endingPage "e45146" @default.
- W4383704247 startingPage "e45146" @default.
- W4383704247 abstract "Methylphenidate is an effective first-line treatment for attention-deficit/hyperactivity disorder (ADHD). However, many adverse effects of methylphenidate have been recorded from randomized clinical trials and patient-reported outcomes, but it is difficult to determine abuse from them. In the context of COVID-19, it is important to determine how drug use evaluation, as well as misuse of drugs, have been affected by the pandemic. As people share their reasons for using medication, patient sentiments, and the effects of medicine on social networking services (SNSs), the application of machine learning and SNS data can be a method to overcome the limitations. Proper machine learning models could be evaluated to validate the effects of the COVID-19 pandemic on drug use.To analyze the effect of the COVID-19 pandemic on the use of methylphenidate, this study analyzed the adverse effects and nonmedical use of methylphenidate and evaluated the change in frequency of nonmedical use based on SNS data before and after the outbreak of COVID-19. Moreover, the performance of 4 machine learning models for classifying methylphenidate use based on SNS data was compared.In this cross-sectional study, SNS data on methylphenidate from Twitter, Facebook, and Instagram from January 2019 to December 2020 were collected. The frequency of adverse effects, nonmedical use, and drug use before and after the COVID-19 pandemic were compared and analyzed. Interrupted time series analysis about the frequency and trends of nonmedical use of methylphenidate was conducted for 24 months from January 2019 to December 2020. Using the labeled training data set and features, the following 4 machine learning models were built using the data, and their performance was evaluated using F-1 scores: naïve Bayes classifier, random forest, support vector machine, and long short-term memory.This study collected 146,352 data points and detected that 4.3% (6340/146,352) were firsthand experience data. Psychiatric problems (521/1683, 31%) had the highest frequency among the adverse effects. The highest frequency of nonmedical use was for studies or work (741/2016, 36.8%). While the frequency of nonmedical use before and after the outbreak of COVID-19 has been similar (odds ratio [OR] 1.02 95% CI 0.91-1.15), its trend has changed significantly due to the pandemic (95% CI 2.36-22.20). Among the machine learning models, RF had the highest performance of 0.75.The trend of nonmedical use of methylphenidate has changed significantly due to the COVID-19 pandemic. Among the machine learning models using SNS data to analyze the adverse effects and nonmedical use of methylphenidate, the random forest model had the highest performance." @default.
- W4383704247 created "2023-07-10" @default.
- W4383704247 creator A5010148552 @default.
- W4383704247 creator A5032711040 @default.
- W4383704247 creator A5069338124 @default.
- W4383704247 date "2023-08-16" @default.
- W4383704247 modified "2023-09-26" @default.
- W4383704247 title "The Adverse Effects and Nonmedical Use of Methylphenidate Before and After the Outbreak of COVID-19: Machine Learning Analysis" @default.
- W4383704247 cites W179875071 @default.
- W4383704247 cites W1975587682 @default.
- W4383704247 cites W2014760348 @default.
- W4383704247 cites W2019810626 @default.
- W4383704247 cites W2022258889 @default.
- W4383704247 cites W2052829343 @default.
- W4383704247 cites W2077324933 @default.
- W4383704247 cites W2082198190 @default.
- W4383704247 cites W2082491345 @default.
- W4383704247 cites W2150874198 @default.
- W4383704247 cites W2151595407 @default.
- W4383704247 cites W2162012775 @default.
- W4383704247 cites W2171074660 @default.
- W4383704247 cites W2176259088 @default.
- W4383704247 cites W2224826979 @default.
- W4383704247 cites W2237269582 @default.
- W4383704247 cites W231827304 @default.
- W4383704247 cites W2332344244 @default.
- W4383704247 cites W2588479716 @default.
- W4383704247 cites W2755891984 @default.
- W4383704247 cites W2794227021 @default.
- W4383704247 cites W2802039131 @default.
- W4383704247 cites W2808356029 @default.
- W4383704247 cites W2923617085 @default.
- W4383704247 cites W2949919329 @default.
- W4383704247 cites W2950102488 @default.
- W4383704247 cites W2956394034 @default.
- W4383704247 cites W2982093611 @default.
- W4383704247 cites W2991252005 @default.
- W4383704247 cites W3003588990 @default.
- W4383704247 cites W3011930431 @default.
- W4383704247 cites W3011966615 @default.
- W4383704247 cites W3016545725 @default.
- W4383704247 cites W3035849736 @default.
- W4383704247 cites W3041917899 @default.
- W4383704247 cites W3044850122 @default.
- W4383704247 cites W3046010739 @default.
- W4383704247 cites W3048905614 @default.
- W4383704247 cites W3087343842 @default.
- W4383704247 cites W3092406269 @default.
- W4383704247 cites W3093389322 @default.
- W4383704247 cites W3093671780 @default.
- W4383704247 cites W3108192182 @default.
- W4383704247 cites W3111885496 @default.
- W4383704247 cites W3121951073 @default.
- W4383704247 cites W3131504710 @default.
- W4383704247 cites W3139229061 @default.
- W4383704247 cites W3156263373 @default.
- W4383704247 cites W3163181833 @default.
- W4383704247 cites W3164629310 @default.
- W4383704247 cites W3186745561 @default.
- W4383704247 cites W3193709038 @default.
- W4383704247 cites W3196105425 @default.
- W4383704247 cites W4231925888 @default.
- W4383704247 cites W4293414344 @default.
- W4383704247 doi "https://doi.org/10.2196/45146" @default.
- W4383704247 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37585250" @default.
- W4383704247 hasPublicationYear "2023" @default.
- W4383704247 type Work @default.
- W4383704247 citedByCount "0" @default.
- W4383704247 crossrefType "journal-article" @default.
- W4383704247 hasAuthorship W4383704247A5010148552 @default.
- W4383704247 hasAuthorship W4383704247A5032711040 @default.
- W4383704247 hasAuthorship W4383704247A5069338124 @default.
- W4383704247 hasBestOaLocation W43837042471 @default.
- W4383704247 hasConcept C118552586 @default.
- W4383704247 hasConcept C126322002 @default.
- W4383704247 hasConcept C151730666 @default.
- W4383704247 hasConcept C15744967 @default.
- W4383704247 hasConcept C197934379 @default.
- W4383704247 hasConcept C2777112843 @default.
- W4383704247 hasConcept C2779134260 @default.
- W4383704247 hasConcept C2779343474 @default.
- W4383704247 hasConcept C2780783007 @default.
- W4383704247 hasConcept C3008058167 @default.
- W4383704247 hasConcept C524204448 @default.
- W4383704247 hasConcept C71924100 @default.
- W4383704247 hasConcept C86803240 @default.
- W4383704247 hasConcept C89623803 @default.
- W4383704247 hasConcept C98274493 @default.
- W4383704247 hasConceptScore W4383704247C118552586 @default.
- W4383704247 hasConceptScore W4383704247C126322002 @default.
- W4383704247 hasConceptScore W4383704247C151730666 @default.
- W4383704247 hasConceptScore W4383704247C15744967 @default.
- W4383704247 hasConceptScore W4383704247C197934379 @default.
- W4383704247 hasConceptScore W4383704247C2777112843 @default.
- W4383704247 hasConceptScore W4383704247C2779134260 @default.
- W4383704247 hasConceptScore W4383704247C2779343474 @default.
- W4383704247 hasConceptScore W4383704247C2780783007 @default.
- W4383704247 hasConceptScore W4383704247C3008058167 @default.