Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383711298> ?p ?o ?g. }
- W4383711298 abstract "Studies have shown that the mechanism of action of many drugs is related to miRNA. In-depth research on the relationship between miRNA and drugs can provide theoretical foundations and practical approaches for various areas, such as drug target discovery, drug repositioning and biomarker research. Traditional biological experiments to test miRNA-drug susceptibility are costly and time-consuming. Thus, sequence- or topology-based deep learning methods are recognized in this field for their efficiency and accuracy. However, these methods have limitations in dealing with sparse topologies and higher-order information of miRNA (drug) feature. In this work, we propose GCFMCL, a model for multi-view contrastive learning based on graph collaborative filtering. To the best of our knowledge, this is the first attempt that incorporates contrastive learning strategy into the graph collaborative filtering framework to predict the sensitivity relationships between miRNA and drug. The proposed multi-view contrastive learning method is divided into topological contrastive objective and feature contrastive objective: (1) For the homogeneous neighbors of the topological graph, we propose a novel topological contrastive learning method via constructing the contrastive target through the topological neighborhood information of nodes. (2) The proposed model obtains feature contrastive targets from high-order feature information according to the correlation of node features, and mines potential neighborhood relationships in the feature space. The proposed multi-view comparative learning effectively alleviates the impact of heterogeneous node noise and graph data sparsity in graph collaborative filtering, and significantly enhances the performance of the model. Our study employs a dataset derived from the NoncoRNA and ncDR databases, encompassing 2049 experimentally validated miRNA-drug sensitivity associations. Five-fold cross-validation shows that the Area Under the Curve (AUC), Area Under the Precision-Recall Curve (AUPR) and F1-score (F1) of GCFMCL reach 95.28%, 95.66% and 89.77%, which outperforms the state-of-the-art (SOTA) method by the margin of 2.73%, 3.42% and 4.96%, respectively. Our code and data can be accessed at https://github.com/kkkayle/GCFMCL." @default.
- W4383711298 created "2023-07-11" @default.
- W4383711298 creator A5004683765 @default.
- W4383711298 creator A5025402144 @default.
- W4383711298 creator A5037785133 @default.
- W4383711298 creator A5044283271 @default.
- W4383711298 creator A5064848268 @default.
- W4383711298 creator A5083481247 @default.
- W4383711298 date "2023-07-01" @default.
- W4383711298 modified "2023-10-16" @default.
- W4383711298 title "GCFMCL: predicting miRNA-drug sensitivity using graph collaborative filtering and multi-view contrastive learning" @default.
- W4383711298 cites W144423133 @default.
- W4383711298 cites W1990061381 @default.
- W4383711298 cites W1998888714 @default.
- W4383711298 cites W2000378868 @default.
- W4383711298 cites W2000817491 @default.
- W4383711298 cites W2002995168 @default.
- W4383711298 cites W2024628274 @default.
- W4383711298 cites W2042281163 @default.
- W4383711298 cites W2073055302 @default.
- W4383711298 cites W2076625645 @default.
- W4383711298 cites W2090163359 @default.
- W4383711298 cites W2112344373 @default.
- W4383711298 cites W2113209482 @default.
- W4383711298 cites W2116341502 @default.
- W4383711298 cites W2124050695 @default.
- W4383711298 cites W2146278947 @default.
- W4383711298 cites W2153778988 @default.
- W4383711298 cites W2314934309 @default.
- W4383711298 cites W2747907311 @default.
- W4383711298 cites W2798253733 @default.
- W4383711298 cites W2892502396 @default.
- W4383711298 cites W2967109100 @default.
- W4383711298 cites W2972190637 @default.
- W4383711298 cites W3007759740 @default.
- W4383711298 cites W3012491561 @default.
- W4383711298 cites W3020929333 @default.
- W4383711298 cites W3045200674 @default.
- W4383711298 cites W3093030756 @default.
- W4383711298 cites W3096505797 @default.
- W4383711298 cites W3120643438 @default.
- W4383711298 cites W3121560287 @default.
- W4383711298 cites W3129471602 @default.
- W4383711298 cites W3161215855 @default.
- W4383711298 cites W3187582009 @default.
- W4383711298 cites W3207365242 @default.
- W4383711298 cites W4225537122 @default.
- W4383711298 cites W4293026554 @default.
- W4383711298 cites W4309645563 @default.
- W4383711298 cites W4313561039 @default.
- W4383711298 cites W4378618906 @default.
- W4383711298 cites W3145571634 @default.
- W4383711298 doi "https://doi.org/10.1093/bib/bbad247" @default.
- W4383711298 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37427977" @default.
- W4383711298 hasPublicationYear "2023" @default.
- W4383711298 type Work @default.
- W4383711298 citedByCount "0" @default.
- W4383711298 crossrefType "journal-article" @default.
- W4383711298 hasAuthorship W4383711298A5004683765 @default.
- W4383711298 hasAuthorship W4383711298A5025402144 @default.
- W4383711298 hasAuthorship W4383711298A5037785133 @default.
- W4383711298 hasAuthorship W4383711298A5044283271 @default.
- W4383711298 hasAuthorship W4383711298A5064848268 @default.
- W4383711298 hasAuthorship W4383711298A5083481247 @default.
- W4383711298 hasBestOaLocation W43837112981 @default.
- W4383711298 hasConcept C119857082 @default.
- W4383711298 hasConcept C127413603 @default.
- W4383711298 hasConcept C132525143 @default.
- W4383711298 hasConcept C138885662 @default.
- W4383711298 hasConcept C154945302 @default.
- W4383711298 hasConcept C2776401178 @default.
- W4383711298 hasConcept C41008148 @default.
- W4383711298 hasConcept C41895202 @default.
- W4383711298 hasConcept C59404180 @default.
- W4383711298 hasConcept C62611344 @default.
- W4383711298 hasConcept C66938386 @default.
- W4383711298 hasConcept C80444323 @default.
- W4383711298 hasConceptScore W4383711298C119857082 @default.
- W4383711298 hasConceptScore W4383711298C127413603 @default.
- W4383711298 hasConceptScore W4383711298C132525143 @default.
- W4383711298 hasConceptScore W4383711298C138885662 @default.
- W4383711298 hasConceptScore W4383711298C154945302 @default.
- W4383711298 hasConceptScore W4383711298C2776401178 @default.
- W4383711298 hasConceptScore W4383711298C41008148 @default.
- W4383711298 hasConceptScore W4383711298C41895202 @default.
- W4383711298 hasConceptScore W4383711298C59404180 @default.
- W4383711298 hasConceptScore W4383711298C62611344 @default.
- W4383711298 hasConceptScore W4383711298C66938386 @default.
- W4383711298 hasConceptScore W4383711298C80444323 @default.
- W4383711298 hasIssue "4" @default.
- W4383711298 hasLocation W43837112981 @default.
- W4383711298 hasLocation W43837112982 @default.
- W4383711298 hasOpenAccess W4383711298 @default.
- W4383711298 hasPrimaryLocation W43837112981 @default.
- W4383711298 hasRelatedWork W2546942002 @default.
- W4383711298 hasRelatedWork W2782592381 @default.
- W4383711298 hasRelatedWork W2965871844 @default.
- W4383711298 hasRelatedWork W2970216048 @default.
- W4383711298 hasRelatedWork W3087493185 @default.
- W4383711298 hasRelatedWork W3118281188 @default.