Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383722153> ?p ?o ?g. }
- W4383722153 endingPage "3031" @default.
- W4383722153 startingPage "3031" @default.
- W4383722153 abstract "This article considers the iterative approach for finding the Moore–Penrose inverse of a matrix. A convergence analysis is presented under certain conditions, demonstrating that the scheme attains third-order convergence. Moreover, theoretical discussions suggest that selecting a particular parameter could further improve the convergence order. The proposed scheme defines the special cases of third-order methods for β=0,1/2, and 1/4. Various large sparse, ill-conditioned, and rectangular matrices obtained from real-life problems were included from the Matrix-Market Library to test the presented scheme. The scheme’s performance was measured on randomly generated complex and real matrices, to verify the theoretical results and demonstrate its superiority over the existing methods. Furthermore, a large number of distinct approaches derived using the proposed family were tested numerically, to determine the optimal parametric value, leading to a successful conclusion." @default.
- W4383722153 created "2023-07-11" @default.
- W4383722153 creator A5006002266 @default.
- W4383722153 creator A5035364580 @default.
- W4383722153 creator A5057263772 @default.
- W4383722153 creator A5078465802 @default.
- W4383722153 date "2023-07-07" @default.
- W4383722153 modified "2023-10-18" @default.
- W4383722153 title "A Cubic Class of Iterative Procedures for Finding the Generalized Inverses" @default.
- W4383722153 cites W1202743199 @default.
- W4383722153 cites W1748292209 @default.
- W4383722153 cites W1843414208 @default.
- W4383722153 cites W1947524858 @default.
- W4383722153 cites W1969336578 @default.
- W4383722153 cites W1972740044 @default.
- W4383722153 cites W1974511160 @default.
- W4383722153 cites W1984188356 @default.
- W4383722153 cites W1986336378 @default.
- W4383722153 cites W1989386584 @default.
- W4383722153 cites W1993293661 @default.
- W4383722153 cites W1994108292 @default.
- W4383722153 cites W1997340084 @default.
- W4383722153 cites W2007653503 @default.
- W4383722153 cites W2012952657 @default.
- W4383722153 cites W2014863553 @default.
- W4383722153 cites W2052747772 @default.
- W4383722153 cites W2053429799 @default.
- W4383722153 cites W2064812689 @default.
- W4383722153 cites W2068515367 @default.
- W4383722153 cites W2073998620 @default.
- W4383722153 cites W2074721415 @default.
- W4383722153 cites W2080532287 @default.
- W4383722153 cites W2154690827 @default.
- W4383722153 cites W2154856083 @default.
- W4383722153 cites W2561020792 @default.
- W4383722153 cites W2749353156 @default.
- W4383722153 cites W2946635824 @default.
- W4383722153 cites W2967842911 @default.
- W4383722153 cites W3040160274 @default.
- W4383722153 cites W3082311520 @default.
- W4383722153 cites W3092220800 @default.
- W4383722153 cites W3122512893 @default.
- W4383722153 cites W3136174377 @default.
- W4383722153 cites W3136625511 @default.
- W4383722153 cites W3165496545 @default.
- W4383722153 cites W3194225172 @default.
- W4383722153 cites W4297790180 @default.
- W4383722153 cites W4352977366 @default.
- W4383722153 cites W4362635578 @default.
- W4383722153 cites W4377091046 @default.
- W4383722153 cites W1992234545 @default.
- W4383722153 doi "https://doi.org/10.3390/math11133031" @default.
- W4383722153 hasPublicationYear "2023" @default.
- W4383722153 type Work @default.
- W4383722153 citedByCount "0" @default.
- W4383722153 crossrefType "journal-article" @default.
- W4383722153 hasAuthorship W4383722153A5006002266 @default.
- W4383722153 hasAuthorship W4383722153A5035364580 @default.
- W4383722153 hasAuthorship W4383722153A5057263772 @default.
- W4383722153 hasAuthorship W4383722153A5078465802 @default.
- W4383722153 hasBestOaLocation W43837221531 @default.
- W4383722153 hasConcept C105795698 @default.
- W4383722153 hasConcept C106487976 @default.
- W4383722153 hasConcept C11413529 @default.
- W4383722153 hasConcept C117251300 @default.
- W4383722153 hasConcept C126255220 @default.
- W4383722153 hasConcept C134306372 @default.
- W4383722153 hasConcept C138885662 @default.
- W4383722153 hasConcept C154945302 @default.
- W4383722153 hasConcept C159694833 @default.
- W4383722153 hasConcept C159985019 @default.
- W4383722153 hasConcept C162324750 @default.
- W4383722153 hasConcept C192562407 @default.
- W4383722153 hasConcept C207467116 @default.
- W4383722153 hasConcept C2524010 @default.
- W4383722153 hasConcept C27206212 @default.
- W4383722153 hasConcept C2777212361 @default.
- W4383722153 hasConcept C2777303404 @default.
- W4383722153 hasConcept C2777566824 @default.
- W4383722153 hasConcept C28826006 @default.
- W4383722153 hasConcept C33923547 @default.
- W4383722153 hasConcept C41008148 @default.
- W4383722153 hasConcept C50522688 @default.
- W4383722153 hasConcept C77618280 @default.
- W4383722153 hasConceptScore W4383722153C105795698 @default.
- W4383722153 hasConceptScore W4383722153C106487976 @default.
- W4383722153 hasConceptScore W4383722153C11413529 @default.
- W4383722153 hasConceptScore W4383722153C117251300 @default.
- W4383722153 hasConceptScore W4383722153C126255220 @default.
- W4383722153 hasConceptScore W4383722153C134306372 @default.
- W4383722153 hasConceptScore W4383722153C138885662 @default.
- W4383722153 hasConceptScore W4383722153C154945302 @default.
- W4383722153 hasConceptScore W4383722153C159694833 @default.
- W4383722153 hasConceptScore W4383722153C159985019 @default.
- W4383722153 hasConceptScore W4383722153C162324750 @default.
- W4383722153 hasConceptScore W4383722153C192562407 @default.
- W4383722153 hasConceptScore W4383722153C207467116 @default.
- W4383722153 hasConceptScore W4383722153C2524010 @default.