Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383722762> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4383722762 endingPage "7966" @default.
- W4383722762 startingPage "7966" @default.
- W4383722762 abstract "Conventional deep learning methods have shown promising results in the medical domain when trained on accurate ground truth data. Pragmatically, due to constraints like lack of time or annotator inexperience, the ground truth data obtained from clinical environments may not always be impeccably accurate. In this paper, we investigate whether the presence of noise in ground truth data can be mitigated. We propose an innovative and efficient approach that addresses the challenge posed by noise in segmentation labels. Our method consists of four key components within a deep learning framework. First, we introduce a Vision Transformer-based modified encoder combined with a convolution-based decoder for the segmentation network, capitalizing on the recent success of self-attention mechanisms. Second, we consider a public CT spine segmentation dataset and devise a preprocessing step to generate (and even exaggerate) noisy labels, simulating real-world clinical situations. Third, to counteract the influence of noisy labels, we incorporate an adaptive denoising learning strategy (ADL) into the network training. Finally, we demonstrate through experimental results that the proposed method achieves noise-robust performance, outperforming existing baseline segmentation methods across multiple evaluation metrics." @default.
- W4383722762 created "2023-07-11" @default.
- W4383722762 creator A5019506454 @default.
- W4383722762 creator A5055611196 @default.
- W4383722762 date "2023-07-07" @default.
- W4383722762 modified "2023-10-14" @default.
- W4383722762 title "Dealing with Unreliable Annotations: A Noise-Robust Network for Semantic Segmentation through A Transformer-Improved Encoder and Convolution Decoder" @default.
- W4383722762 cites W1901129140 @default.
- W4383722762 cites W2119249988 @default.
- W4383722762 cites W2119878957 @default.
- W4383722762 cites W2312198368 @default.
- W4383722762 cites W2464708700 @default.
- W4383722762 cites W2894878591 @default.
- W4383722762 cites W2914363005 @default.
- W4383722762 cites W2928133111 @default.
- W4383722762 cites W2953129827 @default.
- W4383722762 cites W2962914239 @default.
- W4383722762 cites W2979433110 @default.
- W4383722762 cites W3007268491 @default.
- W4383722762 cites W3007348959 @default.
- W4383722762 cites W3015788359 @default.
- W4383722762 cites W3033272814 @default.
- W4383722762 cites W3044738063 @default.
- W4383722762 cites W3092564080 @default.
- W4383722762 cites W3105636206 @default.
- W4383722762 cites W3134313806 @default.
- W4383722762 cites W3138516171 @default.
- W4383722762 cites W3151250393 @default.
- W4383722762 cites W3195720575 @default.
- W4383722762 cites W3199551447 @default.
- W4383722762 cites W4212875960 @default.
- W4383722762 cites W4287226059 @default.
- W4383722762 cites W4295934187 @default.
- W4383722762 cites W4321232185 @default.
- W4383722762 cites W4361273579 @default.
- W4383722762 cites W4367316314 @default.
- W4383722762 doi "https://doi.org/10.3390/app13137966" @default.
- W4383722762 hasPublicationYear "2023" @default.
- W4383722762 type Work @default.
- W4383722762 citedByCount "2" @default.
- W4383722762 crossrefType "journal-article" @default.
- W4383722762 hasAuthorship W4383722762A5019506454 @default.
- W4383722762 hasAuthorship W4383722762A5055611196 @default.
- W4383722762 hasBestOaLocation W43837227621 @default.
- W4383722762 hasConcept C108583219 @default.
- W4383722762 hasConcept C111919701 @default.
- W4383722762 hasConcept C115961682 @default.
- W4383722762 hasConcept C118505674 @default.
- W4383722762 hasConcept C119857082 @default.
- W4383722762 hasConcept C121332964 @default.
- W4383722762 hasConcept C146849305 @default.
- W4383722762 hasConcept C153180895 @default.
- W4383722762 hasConcept C154945302 @default.
- W4383722762 hasConcept C163294075 @default.
- W4383722762 hasConcept C165801399 @default.
- W4383722762 hasConcept C31972630 @default.
- W4383722762 hasConcept C34736171 @default.
- W4383722762 hasConcept C41008148 @default.
- W4383722762 hasConcept C62520636 @default.
- W4383722762 hasConcept C66322947 @default.
- W4383722762 hasConcept C89600930 @default.
- W4383722762 hasConcept C99498987 @default.
- W4383722762 hasConceptScore W4383722762C108583219 @default.
- W4383722762 hasConceptScore W4383722762C111919701 @default.
- W4383722762 hasConceptScore W4383722762C115961682 @default.
- W4383722762 hasConceptScore W4383722762C118505674 @default.
- W4383722762 hasConceptScore W4383722762C119857082 @default.
- W4383722762 hasConceptScore W4383722762C121332964 @default.
- W4383722762 hasConceptScore W4383722762C146849305 @default.
- W4383722762 hasConceptScore W4383722762C153180895 @default.
- W4383722762 hasConceptScore W4383722762C154945302 @default.
- W4383722762 hasConceptScore W4383722762C163294075 @default.
- W4383722762 hasConceptScore W4383722762C165801399 @default.
- W4383722762 hasConceptScore W4383722762C31972630 @default.
- W4383722762 hasConceptScore W4383722762C34736171 @default.
- W4383722762 hasConceptScore W4383722762C41008148 @default.
- W4383722762 hasConceptScore W4383722762C62520636 @default.
- W4383722762 hasConceptScore W4383722762C66322947 @default.
- W4383722762 hasConceptScore W4383722762C89600930 @default.
- W4383722762 hasConceptScore W4383722762C99498987 @default.
- W4383722762 hasIssue "13" @default.
- W4383722762 hasLocation W43837227621 @default.
- W4383722762 hasOpenAccess W4383722762 @default.
- W4383722762 hasPrimaryLocation W43837227621 @default.
- W4383722762 hasRelatedWork W1669643531 @default.
- W4383722762 hasRelatedWork W2005437358 @default.
- W4383722762 hasRelatedWork W2008656436 @default.
- W4383722762 hasRelatedWork W2134924024 @default.
- W4383722762 hasRelatedWork W2517104666 @default.
- W4383722762 hasRelatedWork W2790662084 @default.
- W4383722762 hasRelatedWork W4223943233 @default.
- W4383722762 hasRelatedWork W4312200629 @default.
- W4383722762 hasRelatedWork W4360585206 @default.
- W4383722762 hasRelatedWork W4380075502 @default.
- W4383722762 hasVolume "13" @default.
- W4383722762 isParatext "false" @default.
- W4383722762 isRetracted "false" @default.
- W4383722762 workType "article" @default.