Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383724140> ?p ?o ?g. }
- W4383724140 endingPage "1045" @default.
- W4383724140 startingPage "1045" @default.
- W4383724140 abstract "Alzheimer's disease (AD) is a neurological condition that gradually weakens the brain and impairs cognition and memory. Multimodal imaging techniques have become increasingly important in the diagnosis of AD because they can help monitor disease progression over time by providing a more complete picture of the changes in the brain that occur over time in AD. Medical image fusion is crucial in that it combines data from various image modalities into a single, better-understood output. The present study explores the feasibility of employing Pareto optimized deep learning methodologies to integrate Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) images through the utilization of pre-existing models, namely the Visual Geometry Group (VGG) 11, VGG16, and VGG19 architectures. Morphological operations are carried out on MRI and PET images using Analyze 14.0 software and after which PET images are manipulated for the desired angle of alignment with MRI image using GNU Image Manipulation Program (GIMP). To enhance the network's performance, transposed convolution layer is incorporated into the previously extracted feature maps before image fusion. This process generates feature maps and fusion weights that facilitate the fusion process. This investigation concerns the assessment of the efficacy of three VGG models in capturing significant features from the MRI and PET data. The hyperparameters of the models are tuned using Pareto optimization. The models' performance is evaluated on the ADNI dataset utilizing the Structure Similarity Index Method (SSIM), Peak Signal-to-Noise Ratio (PSNR), Mean-Square Error (MSE), and Entropy (E). Experimental results show that VGG19 outperforms VGG16 and VGG11 with an average of 0.668, 0.802, and 0.664 SSIM for CN, AD, and MCI stages from ADNI (MRI modality) respectively. Likewise, an average of 0.669, 0.815, and 0.660 SSIM for CN, AD, and MCI stages from ADNI (PET modality) respectively." @default.
- W4383724140 created "2023-07-11" @default.
- W4383724140 creator A5039508726 @default.
- W4383724140 creator A5042653526 @default.
- W4383724140 creator A5089583601 @default.
- W4383724140 date "2023-07-08" @default.
- W4383724140 modified "2023-09-30" @default.
- W4383724140 title "Pareto Optimized Adaptive Learning with Transposed Convolution for Image Fusion Alzheimer’s Disease Classification" @default.
- W4383724140 cites W2145695314 @default.
- W4383724140 cites W2525655278 @default.
- W4383724140 cites W2574356929 @default.
- W4383724140 cites W2738775733 @default.
- W4383724140 cites W2767512561 @default.
- W4383724140 cites W2791282053 @default.
- W4383724140 cites W2804852851 @default.
- W4383724140 cites W281036081 @default.
- W4383724140 cites W2828601215 @default.
- W4383724140 cites W2902057329 @default.
- W4383724140 cites W2912147220 @default.
- W4383724140 cites W2919234133 @default.
- W4383724140 cites W2938124269 @default.
- W4383724140 cites W2960986212 @default.
- W4383724140 cites W2966009696 @default.
- W4383724140 cites W2991909137 @default.
- W4383724140 cites W2998710796 @default.
- W4383724140 cites W3049587623 @default.
- W4383724140 cites W3081752372 @default.
- W4383724140 cites W3082398730 @default.
- W4383724140 cites W3093116876 @default.
- W4383724140 cites W3121121992 @default.
- W4383724140 cites W3134925858 @default.
- W4383724140 cites W3180787265 @default.
- W4383724140 cites W3185440643 @default.
- W4383724140 cites W3201798407 @default.
- W4383724140 cites W3214042654 @default.
- W4383724140 cites W4206730042 @default.
- W4383724140 cites W4220857768 @default.
- W4383724140 cites W4225898646 @default.
- W4383724140 cites W4225915170 @default.
- W4383724140 cites W4280617677 @default.
- W4383724140 cites W4290860705 @default.
- W4383724140 cites W4296121294 @default.
- W4383724140 cites W4296519906 @default.
- W4383724140 cites W4307248062 @default.
- W4383724140 cites W4310037043 @default.
- W4383724140 cites W4310662707 @default.
- W4383724140 cites W4312125929 @default.
- W4383724140 cites W4313414758 @default.
- W4383724140 cites W4318624501 @default.
- W4383724140 cites W4319081210 @default.
- W4383724140 cites W4323315257 @default.
- W4383724140 cites W4324062828 @default.
- W4383724140 cites W4381435789 @default.
- W4383724140 doi "https://doi.org/10.3390/brainsci13071045" @default.
- W4383724140 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37508977" @default.
- W4383724140 hasPublicationYear "2023" @default.
- W4383724140 type Work @default.
- W4383724140 citedByCount "1" @default.
- W4383724140 countsByYear W43837241402023 @default.
- W4383724140 crossrefType "journal-article" @default.
- W4383724140 hasAuthorship W4383724140A5039508726 @default.
- W4383724140 hasAuthorship W4383724140A5042653526 @default.
- W4383724140 hasAuthorship W4383724140A5089583601 @default.
- W4383724140 hasBestOaLocation W43837241401 @default.
- W4383724140 hasConcept C108583219 @default.
- W4383724140 hasConcept C115961682 @default.
- W4383724140 hasConcept C119857082 @default.
- W4383724140 hasConcept C138885662 @default.
- W4383724140 hasConcept C153180895 @default.
- W4383724140 hasConcept C154945302 @default.
- W4383724140 hasConcept C2775842073 @default.
- W4383724140 hasConcept C2776401178 @default.
- W4383724140 hasConcept C2989005 @default.
- W4383724140 hasConcept C31972630 @default.
- W4383724140 hasConcept C41008148 @default.
- W4383724140 hasConcept C41895202 @default.
- W4383724140 hasConcept C69744172 @default.
- W4383724140 hasConcept C71924100 @default.
- W4383724140 hasConcept C81363708 @default.
- W4383724140 hasConceptScore W4383724140C108583219 @default.
- W4383724140 hasConceptScore W4383724140C115961682 @default.
- W4383724140 hasConceptScore W4383724140C119857082 @default.
- W4383724140 hasConceptScore W4383724140C138885662 @default.
- W4383724140 hasConceptScore W4383724140C153180895 @default.
- W4383724140 hasConceptScore W4383724140C154945302 @default.
- W4383724140 hasConceptScore W4383724140C2775842073 @default.
- W4383724140 hasConceptScore W4383724140C2776401178 @default.
- W4383724140 hasConceptScore W4383724140C2989005 @default.
- W4383724140 hasConceptScore W4383724140C31972630 @default.
- W4383724140 hasConceptScore W4383724140C41008148 @default.
- W4383724140 hasConceptScore W4383724140C41895202 @default.
- W4383724140 hasConceptScore W4383724140C69744172 @default.
- W4383724140 hasConceptScore W4383724140C71924100 @default.
- W4383724140 hasConceptScore W4383724140C81363708 @default.
- W4383724140 hasIssue "7" @default.
- W4383724140 hasLocation W43837241401 @default.
- W4383724140 hasLocation W43837241402 @default.
- W4383724140 hasLocation W43837241403 @default.