Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383736752> ?p ?o ?g. }
- W4383736752 endingPage "2042" @default.
- W4383736752 startingPage "2042" @default.
- W4383736752 abstract "Machine learning is the main technical means for lithofacies logging identification. As the main target of shale oil spatial distribution prediction, mud shale petrography is subjected to the constraints of stratigraphic inhomogeneity and logging information redundancy. Therefore, choosing the most applicable machine learning method for different geological characteristics and data situations is one of the key aspects of high-precision lithofacies identification. However, only a few studies have been conducted on the applicability of machine learning methods for mud shale petrography. This paper aims to identify lithofacies using commonly used machine learning methods. The study employs five supervised learning algorithms, namely Random Forest Algorithm (RF), BP Neural Network Algorithm (BPANN), Gradient Boosting Decision Tree Method (GBDT), Nearest Neighbor Method (KNN), and Vector Machine Method (SVM), as well as four unsupervised learning algorithms, namely K-means, DBSCAN, SOM, and MRGC. The results are evaluated using the confusion matrix, which provides the accuracy of each algorithm. The GBDT algorithm has better accuracy in supervised learning, while the K-means and DBSCAN algorithms have higher accuracy in unsupervised learning. Based on the comparison of different algorithms, it can be concluded that shale lithofacies identification poses challenges due to limited sample data and high overlapping degree of type distribution areas. Therefore, selecting the appropriate algorithm is crucial. Although supervised machine learning algorithms are generally accurate, they are limited by the data volume of lithofacies samples. Future research should focus on how to make the most of limited samples for supervised learning and combine unsupervised learning algorithms to explore lithofacies types of non-coring wells." @default.
- W4383736752 created "2023-07-11" @default.
- W4383736752 creator A5002586556 @default.
- W4383736752 creator A5024431719 @default.
- W4383736752 creator A5032769690 @default.
- W4383736752 creator A5039410252 @default.
- W4383736752 creator A5040091374 @default.
- W4383736752 creator A5044526651 @default.
- W4383736752 creator A5054150714 @default.
- W4383736752 creator A5083166521 @default.
- W4383736752 creator A5088347325 @default.
- W4383736752 date "2023-07-07" @default.
- W4383736752 modified "2023-09-29" @default.
- W4383736752 title "Application and Comparison of Machine Learning Methods for Mud Shale Petrographic Identification" @default.
- W4383736752 cites W1992359303 @default.
- W4383736752 cites W1994770477 @default.
- W4383736752 cites W2006796903 @default.
- W4383736752 cites W2074009903 @default.
- W4383736752 cites W2122926182 @default.
- W4383736752 cites W2161219510 @default.
- W4383736752 cites W2324613372 @default.
- W4383736752 cites W2800878814 @default.
- W4383736752 cites W2808534698 @default.
- W4383736752 cites W2890551816 @default.
- W4383736752 cites W2892366616 @default.
- W4383736752 cites W2941090017 @default.
- W4383736752 cites W2979621178 @default.
- W4383736752 cites W3024429655 @default.
- W4383736752 cites W3048528067 @default.
- W4383736752 cites W3088867807 @default.
- W4383736752 cites W3090659357 @default.
- W4383736752 cites W3139409316 @default.
- W4383736752 cites W3174924387 @default.
- W4383736752 cites W3184149319 @default.
- W4383736752 cites W4205861361 @default.
- W4383736752 cites W4291238211 @default.
- W4383736752 cites W4309047022 @default.
- W4383736752 cites W4312212548 @default.
- W4383736752 cites W4319310631 @default.
- W4383736752 cites W4320730622 @default.
- W4383736752 cites W4362640513 @default.
- W4383736752 cites W4376254233 @default.
- W4383736752 cites W65738273 @default.
- W4383736752 doi "https://doi.org/10.3390/pr11072042" @default.
- W4383736752 hasPublicationYear "2023" @default.
- W4383736752 type Work @default.
- W4383736752 citedByCount "1" @default.
- W4383736752 countsByYear W43837367522023 @default.
- W4383736752 crossrefType "journal-article" @default.
- W4383736752 hasAuthorship W4383736752A5002586556 @default.
- W4383736752 hasAuthorship W4383736752A5024431719 @default.
- W4383736752 hasAuthorship W4383736752A5032769690 @default.
- W4383736752 hasAuthorship W4383736752A5039410252 @default.
- W4383736752 hasAuthorship W4383736752A5040091374 @default.
- W4383736752 hasAuthorship W4383736752A5044526651 @default.
- W4383736752 hasAuthorship W4383736752A5054150714 @default.
- W4383736752 hasAuthorship W4383736752A5083166521 @default.
- W4383736752 hasAuthorship W4383736752A5088347325 @default.
- W4383736752 hasBestOaLocation W43837367521 @default.
- W4383736752 hasConcept C11413529 @default.
- W4383736752 hasConcept C119857082 @default.
- W4383736752 hasConcept C12267149 @default.
- W4383736752 hasConcept C136389625 @default.
- W4383736752 hasConcept C138602881 @default.
- W4383736752 hasConcept C153180895 @default.
- W4383736752 hasConcept C154945302 @default.
- W4383736752 hasConcept C41008148 @default.
- W4383736752 hasConcept C50644808 @default.
- W4383736752 hasConcept C8038995 @default.
- W4383736752 hasConcept C84525736 @default.
- W4383736752 hasConceptScore W4383736752C11413529 @default.
- W4383736752 hasConceptScore W4383736752C119857082 @default.
- W4383736752 hasConceptScore W4383736752C12267149 @default.
- W4383736752 hasConceptScore W4383736752C136389625 @default.
- W4383736752 hasConceptScore W4383736752C138602881 @default.
- W4383736752 hasConceptScore W4383736752C153180895 @default.
- W4383736752 hasConceptScore W4383736752C154945302 @default.
- W4383736752 hasConceptScore W4383736752C41008148 @default.
- W4383736752 hasConceptScore W4383736752C50644808 @default.
- W4383736752 hasConceptScore W4383736752C8038995 @default.
- W4383736752 hasConceptScore W4383736752C84525736 @default.
- W4383736752 hasIssue "7" @default.
- W4383736752 hasLocation W43837367521 @default.
- W4383736752 hasOpenAccess W4383736752 @default.
- W4383736752 hasPrimaryLocation W43837367521 @default.
- W4383736752 hasRelatedWork W3046775127 @default.
- W4383736752 hasRelatedWork W3208099188 @default.
- W4383736752 hasRelatedWork W3210918776 @default.
- W4383736752 hasRelatedWork W4205478082 @default.
- W4383736752 hasRelatedWork W4229001893 @default.
- W4383736752 hasRelatedWork W4285260836 @default.
- W4383736752 hasRelatedWork W4318350883 @default.
- W4383736752 hasRelatedWork W4361795583 @default.
- W4383736752 hasRelatedWork W4384345534 @default.
- W4383736752 hasRelatedWork W3124024302 @default.
- W4383736752 hasVolume "11" @default.
- W4383736752 isParatext "false" @default.
- W4383736752 isRetracted "false" @default.