Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383742481> ?p ?o ?g. }
- W4383742481 endingPage "446" @default.
- W4383742481 startingPage "430" @default.
- W4383742481 abstract "The growing prevalence of image data in engineering and medical applications motivates the need for classification performance that are robust against outliers. To facilitate efficient and data-driven classification and recovery method, in this paper, we propose a novel supervised learning strategy based on the robust principal component analysis for third-order tensor and minimum distance criterion L2E for logistic regression, which is named as doubly robust logistic regression. Our work applies the ADMM method to obtain updating algorithm, and its global convergence is established even though L2E loss function is non-convex. We also extend the estimation procedure to the case of incomplete observation in input matrix. The numerical experiments demonstrate the advantages of combining the logistic L2E with tensor robust principal component analysis which can not only increase the accuracy of classification but also improve the recovery accuracy of noisy image. Three real data analysis are further used to examine the outperformance of our proposed method over the stat-of-art." @default.
- W4383742481 created "2023-07-11" @default.
- W4383742481 creator A5014741384 @default.
- W4383742481 creator A5016463687 @default.
- W4383742481 creator A5068824731 @default.
- W4383742481 creator A5073216396 @default.
- W4383742481 date "2023-11-01" @default.
- W4383742481 modified "2023-10-14" @default.
- W4383742481 title "Doubly robust logistic regression for image classification" @default.
- W4383742481 cites W1511503348 @default.
- W4383742481 cites W1968154520 @default.
- W4383742481 cites W1981073055 @default.
- W4383742481 cites W1989267105 @default.
- W4383742481 cites W2009702064 @default.
- W4383742481 cites W2010119146 @default.
- W4383742481 cites W2022541060 @default.
- W4383742481 cites W2023199413 @default.
- W4383742481 cites W2032320656 @default.
- W4383742481 cites W2034072031 @default.
- W4383742481 cites W2041490670 @default.
- W4383742481 cites W2043571470 @default.
- W4383742481 cites W2052211772 @default.
- W4383742481 cites W2061588239 @default.
- W4383742481 cites W2080843093 @default.
- W4383742481 cites W2103972604 @default.
- W4383742481 cites W2117890631 @default.
- W4383742481 cites W2122825543 @default.
- W4383742481 cites W2123921160 @default.
- W4383742481 cites W2145962650 @default.
- W4383742481 cites W2247839338 @default.
- W4383742481 cites W2331639718 @default.
- W4383742481 cites W2782463043 @default.
- W4383742481 cites W2892674788 @default.
- W4383742481 cites W2962853966 @default.
- W4383742481 cites W2963885538 @default.
- W4383742481 cites W2964214749 @default.
- W4383742481 cites W3027571940 @default.
- W4383742481 cites W3193414255 @default.
- W4383742481 cites W3205098874 @default.
- W4383742481 cites W3215328074 @default.
- W4383742481 cites W4285021604 @default.
- W4383742481 cites W4285806419 @default.
- W4383742481 doi "https://doi.org/10.1016/j.apm.2023.06.039" @default.
- W4383742481 hasPublicationYear "2023" @default.
- W4383742481 type Work @default.
- W4383742481 citedByCount "0" @default.
- W4383742481 crossrefType "journal-article" @default.
- W4383742481 hasAuthorship W4383742481A5014741384 @default.
- W4383742481 hasAuthorship W4383742481A5016463687 @default.
- W4383742481 hasAuthorship W4383742481A5068824731 @default.
- W4383742481 hasAuthorship W4383742481A5073216396 @default.
- W4383742481 hasConcept C104317684 @default.
- W4383742481 hasConcept C105795698 @default.
- W4383742481 hasConcept C115961682 @default.
- W4383742481 hasConcept C119857082 @default.
- W4383742481 hasConcept C124101348 @default.
- W4383742481 hasConcept C151956035 @default.
- W4383742481 hasConcept C153180895 @default.
- W4383742481 hasConcept C154945302 @default.
- W4383742481 hasConcept C162324750 @default.
- W4383742481 hasConcept C185592680 @default.
- W4383742481 hasConcept C27438332 @default.
- W4383742481 hasConcept C2777303404 @default.
- W4383742481 hasConcept C2777749129 @default.
- W4383742481 hasConcept C33923547 @default.
- W4383742481 hasConcept C41008148 @default.
- W4383742481 hasConcept C50522688 @default.
- W4383742481 hasConcept C55493867 @default.
- W4383742481 hasConcept C61722155 @default.
- W4383742481 hasConcept C63479239 @default.
- W4383742481 hasConcept C67226441 @default.
- W4383742481 hasConcept C70259352 @default.
- W4383742481 hasConcept C75294576 @default.
- W4383742481 hasConcept C79337645 @default.
- W4383742481 hasConcept C83546350 @default.
- W4383742481 hasConceptScore W4383742481C104317684 @default.
- W4383742481 hasConceptScore W4383742481C105795698 @default.
- W4383742481 hasConceptScore W4383742481C115961682 @default.
- W4383742481 hasConceptScore W4383742481C119857082 @default.
- W4383742481 hasConceptScore W4383742481C124101348 @default.
- W4383742481 hasConceptScore W4383742481C151956035 @default.
- W4383742481 hasConceptScore W4383742481C153180895 @default.
- W4383742481 hasConceptScore W4383742481C154945302 @default.
- W4383742481 hasConceptScore W4383742481C162324750 @default.
- W4383742481 hasConceptScore W4383742481C185592680 @default.
- W4383742481 hasConceptScore W4383742481C27438332 @default.
- W4383742481 hasConceptScore W4383742481C2777303404 @default.
- W4383742481 hasConceptScore W4383742481C2777749129 @default.
- W4383742481 hasConceptScore W4383742481C33923547 @default.
- W4383742481 hasConceptScore W4383742481C41008148 @default.
- W4383742481 hasConceptScore W4383742481C50522688 @default.
- W4383742481 hasConceptScore W4383742481C55493867 @default.
- W4383742481 hasConceptScore W4383742481C61722155 @default.
- W4383742481 hasConceptScore W4383742481C63479239 @default.
- W4383742481 hasConceptScore W4383742481C67226441 @default.
- W4383742481 hasConceptScore W4383742481C70259352 @default.
- W4383742481 hasConceptScore W4383742481C75294576 @default.
- W4383742481 hasConceptScore W4383742481C79337645 @default.