Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383742783> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4383742783 abstract "Chatbots are computer programs that use artificial intelligence to imitate human conversations. Recent advancements in deep learning have shown interest in utilizing language transformers, which do not rely on predefined rules and responses like traditional chatbots. This study provides a comprehensive review of previous research on chatbots that employ deep learning and transfer learning models. Specifically, it examines the current trends in using language transformers with transfer learning techniques to evaluate the ability of Arabic chatbots to understand conversation context and demonstrate natural behavior. The proposed methods explore the use of AraBERT, CAMeLBERT, AraElectra-SQuAD, and AraElectra (Generator/Discriminator) transformers, with different variants of these transformers and semantic embedding models. Two datasets were used for evaluation: one with 398 questions and corresponding documents, and another with 1395 questions and 365,568 documents sourced from Arabic Wikipedia. Extensive experimental works were conducted, evaluating both manually crafted questions and the entire set of questions, using confidence and similarity metrics. The experimental results showed that the AraElectra-SQuAD model achieved an average confidence score of 0.6422 and an average similarity score of 0.9773 on the first dataset, and an average confidence score of 0.6658 and similarity score of 0.9660 on the second dataset. The study concludes that the AraElectra-SQuAD model consistently outperformed other models, displaying remarkable performance, high confidence, and similarity scores, as well as robustness, highlighting its potential for practical applications in natural language processing tasks for Arabic chatbots. The study suggests that the AraElectra-SQuAD model can be further enhanced and applied in various tasks such as chatbots, virtual assistants, and information retrieval systems for Arabic-speaking users. By combining the power of transformer architecture with fine-tuning on SQuAD-like large data, this trend demonstrates its ability to provide accurate and contextually relevant answers to questions in Arabic." @default.
- W4383742783 created "2023-07-11" @default.
- W4383742783 creator A5064370497 @default.
- W4383742783 creator A5092437073 @default.
- W4383742783 date "2023-07-10" @default.
- W4383742783 modified "2023-09-25" @default.
- W4383742783 title "Arabic Chatbot Evaluation Based on Extractive Question-Answering Transfer Learning and Language Transformers" @default.
- W4383742783 doi "https://doi.org/10.20944/preprints202307.0609.v1" @default.
- W4383742783 hasPublicationYear "2023" @default.
- W4383742783 type Work @default.
- W4383742783 citedByCount "0" @default.
- W4383742783 crossrefType "posted-content" @default.
- W4383742783 hasAuthorship W4383742783A5064370497 @default.
- W4383742783 hasAuthorship W4383742783A5092437073 @default.
- W4383742783 hasBestOaLocation W43837427831 @default.
- W4383742783 hasConcept C119599485 @default.
- W4383742783 hasConcept C119857082 @default.
- W4383742783 hasConcept C127413603 @default.
- W4383742783 hasConcept C137293760 @default.
- W4383742783 hasConcept C138885662 @default.
- W4383742783 hasConcept C150899416 @default.
- W4383742783 hasConcept C154945302 @default.
- W4383742783 hasConcept C165801399 @default.
- W4383742783 hasConcept C204321447 @default.
- W4383742783 hasConcept C2777200299 @default.
- W4383742783 hasConcept C2779041454 @default.
- W4383742783 hasConcept C41008148 @default.
- W4383742783 hasConcept C41895202 @default.
- W4383742783 hasConcept C44291984 @default.
- W4383742783 hasConcept C66322947 @default.
- W4383742783 hasConceptScore W4383742783C119599485 @default.
- W4383742783 hasConceptScore W4383742783C119857082 @default.
- W4383742783 hasConceptScore W4383742783C127413603 @default.
- W4383742783 hasConceptScore W4383742783C137293760 @default.
- W4383742783 hasConceptScore W4383742783C138885662 @default.
- W4383742783 hasConceptScore W4383742783C150899416 @default.
- W4383742783 hasConceptScore W4383742783C154945302 @default.
- W4383742783 hasConceptScore W4383742783C165801399 @default.
- W4383742783 hasConceptScore W4383742783C204321447 @default.
- W4383742783 hasConceptScore W4383742783C2777200299 @default.
- W4383742783 hasConceptScore W4383742783C2779041454 @default.
- W4383742783 hasConceptScore W4383742783C41008148 @default.
- W4383742783 hasConceptScore W4383742783C41895202 @default.
- W4383742783 hasConceptScore W4383742783C44291984 @default.
- W4383742783 hasConceptScore W4383742783C66322947 @default.
- W4383742783 hasLocation W43837427831 @default.
- W4383742783 hasLocation W43837427832 @default.
- W4383742783 hasOpenAccess W4383742783 @default.
- W4383742783 hasPrimaryLocation W43837427831 @default.
- W4383742783 hasRelatedWork W207304934 @default.
- W4383742783 hasRelatedWork W2785805847 @default.
- W4383742783 hasRelatedWork W2964413124 @default.
- W4383742783 hasRelatedWork W3204607391 @default.
- W4383742783 hasRelatedWork W3204793433 @default.
- W4383742783 hasRelatedWork W4287761227 @default.
- W4383742783 hasRelatedWork W4288267738 @default.
- W4383742783 hasRelatedWork W4308262314 @default.
- W4383742783 hasRelatedWork W4362647036 @default.
- W4383742783 hasRelatedWork W4385878177 @default.
- W4383742783 isParatext "false" @default.
- W4383742783 isRetracted "false" @default.
- W4383742783 workType "article" @default.