Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383742937> ?p ?o ?g. }
- W4383742937 endingPage "109485" @default.
- W4383742937 startingPage "109485" @default.
- W4383742937 abstract "Machine learning (ML) approach based on big-data is a powerful tool of fatigue life prediction and some potential results can be obtained. The present study introduces a multi-algorithm integration ML approach named Auto_Gluon (AG) to predict the high cycle fatigue (HCF) life of a titanium alloy TC17 on the basis of numerous experimental fatigue data. The prediction results from AG are compared with those from the commonly-used ML models including Random Forest (RF) and Support Vector Regression (SVR). Then AG is used to explore the key parameters influencing the fatigue life. The present results show the prediction accuracy of AG is better than other ML models. And the most significant category of factors affecting the fatigue life of TC17 is the specimen properties. The study demonstrates that the present ML approach has great potential in fatigue life prediction." @default.
- W4383742937 created "2023-07-11" @default.
- W4383742937 creator A5028462736 @default.
- W4383742937 creator A5030877421 @default.
- W4383742937 creator A5057944252 @default.
- W4383742937 creator A5085724938 @default.
- W4383742937 creator A5089766775 @default.
- W4383742937 date "2023-09-01" @default.
- W4383742937 modified "2023-09-23" @default.
- W4383742937 title "A multi-algorithm integration machine learning approach for high cycle fatigue prediction of a titanium alloy in aero-engine" @default.
- W4383742937 cites W1533964197 @default.
- W4383742937 cites W1964357740 @default.
- W4383742937 cites W1964940342 @default.
- W4383742937 cites W1971547695 @default.
- W4383742937 cites W1974549272 @default.
- W4383742937 cites W1980264541 @default.
- W4383742937 cites W2010660351 @default.
- W4383742937 cites W2017290161 @default.
- W4383742937 cites W2033872649 @default.
- W4383742937 cites W2058206133 @default.
- W4383742937 cites W2069929199 @default.
- W4383742937 cites W2072750586 @default.
- W4383742937 cites W2074736869 @default.
- W4383742937 cites W2141554164 @default.
- W4383742937 cites W2216946510 @default.
- W4383742937 cites W2261059368 @default.
- W4383742937 cites W2338402873 @default.
- W4383742937 cites W2524356231 @default.
- W4383742937 cites W2594211991 @default.
- W4383742937 cites W2768552973 @default.
- W4383742937 cites W2884430236 @default.
- W4383742937 cites W2901450490 @default.
- W4383742937 cites W2905792181 @default.
- W4383742937 cites W2946680784 @default.
- W4383742937 cites W2961604913 @default.
- W4383742937 cites W3016425697 @default.
- W4383742937 cites W3084200341 @default.
- W4383742937 cites W3087632295 @default.
- W4383742937 cites W3091924507 @default.
- W4383742937 cites W3114692006 @default.
- W4383742937 cites W3121371773 @default.
- W4383742937 cites W3123854369 @default.
- W4383742937 cites W3138148883 @default.
- W4383742937 cites W3156122116 @default.
- W4383742937 cites W3185787251 @default.
- W4383742937 cites W3186322658 @default.
- W4383742937 cites W3210035924 @default.
- W4383742937 cites W3217680126 @default.
- W4383742937 cites W4205247343 @default.
- W4383742937 cites W4224910192 @default.
- W4383742937 cites W4285603290 @default.
- W4383742937 cites W4297284537 @default.
- W4383742937 cites W4319827791 @default.
- W4383742937 cites W4327919901 @default.
- W4383742937 cites W4361291832 @default.
- W4383742937 doi "https://doi.org/10.1016/j.engfracmech.2023.109485" @default.
- W4383742937 hasPublicationYear "2023" @default.
- W4383742937 type Work @default.
- W4383742937 citedByCount "0" @default.
- W4383742937 crossrefType "journal-article" @default.
- W4383742937 hasAuthorship W4383742937A5028462736 @default.
- W4383742937 hasAuthorship W4383742937A5030877421 @default.
- W4383742937 hasAuthorship W4383742937A5057944252 @default.
- W4383742937 hasAuthorship W4383742937A5085724938 @default.
- W4383742937 hasAuthorship W4383742937A5089766775 @default.
- W4383742937 hasConcept C105795698 @default.
- W4383742937 hasConcept C11413529 @default.
- W4383742937 hasConcept C119857082 @default.
- W4383742937 hasConcept C12267149 @default.
- W4383742937 hasConcept C124101348 @default.
- W4383742937 hasConcept C127413603 @default.
- W4383742937 hasConcept C154945302 @default.
- W4383742937 hasConcept C169258074 @default.
- W4383742937 hasConcept C191897082 @default.
- W4383742937 hasConcept C192562407 @default.
- W4383742937 hasConcept C2779686264 @default.
- W4383742937 hasConcept C2780026712 @default.
- W4383742937 hasConcept C33923547 @default.
- W4383742937 hasConcept C41008148 @default.
- W4383742937 hasConcept C66938386 @default.
- W4383742937 hasConcept C75684735 @default.
- W4383742937 hasConcept C83546350 @default.
- W4383742937 hasConcept C8953137 @default.
- W4383742937 hasConceptScore W4383742937C105795698 @default.
- W4383742937 hasConceptScore W4383742937C11413529 @default.
- W4383742937 hasConceptScore W4383742937C119857082 @default.
- W4383742937 hasConceptScore W4383742937C12267149 @default.
- W4383742937 hasConceptScore W4383742937C124101348 @default.
- W4383742937 hasConceptScore W4383742937C127413603 @default.
- W4383742937 hasConceptScore W4383742937C154945302 @default.
- W4383742937 hasConceptScore W4383742937C169258074 @default.
- W4383742937 hasConceptScore W4383742937C191897082 @default.
- W4383742937 hasConceptScore W4383742937C192562407 @default.
- W4383742937 hasConceptScore W4383742937C2779686264 @default.
- W4383742937 hasConceptScore W4383742937C2780026712 @default.
- W4383742937 hasConceptScore W4383742937C33923547 @default.
- W4383742937 hasConceptScore W4383742937C41008148 @default.
- W4383742937 hasConceptScore W4383742937C66938386 @default.