Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383746516> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4383746516 abstract "In the research area of object detection, the recognition of different fish species in a cluttered environment is a challenging task. In the live fish market, different fish species with variations in size, angle, and scale make it hard for the common people to recognize the species properly. Again, counting and sorting fish species is an important task in the fisheries industry. A dataset named JUDVLP-WBUAFS: Fishdb-Detection.v1 with 400 images is prepared by collecting images from the different live fish markets in West Bengal under unconstrained environments. Various augmentations like flip, rotation, blur, gaussian noise, hue saturation, and RGBshift have been applied to make the dataset more diversified and less prone to overfitting. A total of six fish species, Labeo catla, Labeo rohita, Cirrhinus mrigala, Labeo bata, Hypophthalmichthys molitrix, and Ctenopharyngodon idella, are considered in this study for the purposes of recognition and counting. Two popular object detection deep learning networks, YOLOv3 and YOLOv5, with different variants, have been applied to the original and augmented datasets individually. Using YOLOv5l and the YOLOv3-SPP network, the best mAP@0.5 of 0.764 is achieved on the original dataset. In the augmented dataset, the best mAP@0.5 of 0.84 is achieved using the YOLOv3-SPP network. The mAP@0.5 value on both datasets shows a promising result for the recognition of fish species in some extremely cluttered environments. This study is expected to help common people and the fishing industry in a variety of contexts." @default.
- W4383746516 created "2023-07-11" @default.
- W4383746516 creator A5011121541 @default.
- W4383746516 creator A5052925695 @default.
- W4383746516 creator A5070947372 @default.
- W4383746516 creator A5075849780 @default.
- W4383746516 creator A5078671947 @default.
- W4383746516 date "2023-05-26" @default.
- W4383746516 modified "2023-10-16" @default.
- W4383746516 title "CARP-YOLO: A Detection Framework for Recognising and Counting Fish Species in a Cluttered Environment" @default.
- W4383746516 cites W1964650584 @default.
- W4383746516 cites W2000502308 @default.
- W4383746516 cites W2499782052 @default.
- W4383746516 cites W2565639579 @default.
- W4383746516 cites W2793879976 @default.
- W4383746516 cites W2901886240 @default.
- W4383746516 cites W2915431448 @default.
- W4383746516 cites W2981482662 @default.
- W4383746516 cites W2986670051 @default.
- W4383746516 cites W2989780864 @default.
- W4383746516 cites W3048149989 @default.
- W4383746516 cites W4220775285 @default.
- W4383746516 cites W4285214977 @default.
- W4383746516 doi "https://doi.org/10.1109/incet57972.2023.10170475" @default.
- W4383746516 hasPublicationYear "2023" @default.
- W4383746516 type Work @default.
- W4383746516 citedByCount "0" @default.
- W4383746516 crossrefType "proceedings-article" @default.
- W4383746516 hasAuthorship W4383746516A5011121541 @default.
- W4383746516 hasAuthorship W4383746516A5052925695 @default.
- W4383746516 hasAuthorship W4383746516A5070947372 @default.
- W4383746516 hasAuthorship W4383746516A5075849780 @default.
- W4383746516 hasAuthorship W4383746516A5078671947 @default.
- W4383746516 hasConcept C126537357 @default.
- W4383746516 hasConcept C146838864 @default.
- W4383746516 hasConcept C153180895 @default.
- W4383746516 hasConcept C154945302 @default.
- W4383746516 hasConcept C2776151529 @default.
- W4383746516 hasConcept C2776463394 @default.
- W4383746516 hasConcept C2776654248 @default.
- W4383746516 hasConcept C2777407658 @default.
- W4383746516 hasConcept C2779668946 @default.
- W4383746516 hasConcept C2780996670 @default.
- W4383746516 hasConcept C2781257293 @default.
- W4383746516 hasConcept C2909208804 @default.
- W4383746516 hasConcept C31972630 @default.
- W4383746516 hasConcept C41008148 @default.
- W4383746516 hasConcept C505870484 @default.
- W4383746516 hasConcept C50644808 @default.
- W4383746516 hasConcept C86803240 @default.
- W4383746516 hasConceptScore W4383746516C126537357 @default.
- W4383746516 hasConceptScore W4383746516C146838864 @default.
- W4383746516 hasConceptScore W4383746516C153180895 @default.
- W4383746516 hasConceptScore W4383746516C154945302 @default.
- W4383746516 hasConceptScore W4383746516C2776151529 @default.
- W4383746516 hasConceptScore W4383746516C2776463394 @default.
- W4383746516 hasConceptScore W4383746516C2776654248 @default.
- W4383746516 hasConceptScore W4383746516C2777407658 @default.
- W4383746516 hasConceptScore W4383746516C2779668946 @default.
- W4383746516 hasConceptScore W4383746516C2780996670 @default.
- W4383746516 hasConceptScore W4383746516C2781257293 @default.
- W4383746516 hasConceptScore W4383746516C2909208804 @default.
- W4383746516 hasConceptScore W4383746516C31972630 @default.
- W4383746516 hasConceptScore W4383746516C41008148 @default.
- W4383746516 hasConceptScore W4383746516C505870484 @default.
- W4383746516 hasConceptScore W4383746516C50644808 @default.
- W4383746516 hasConceptScore W4383746516C86803240 @default.
- W4383746516 hasLocation W43837465161 @default.
- W4383746516 hasOpenAccess W4383746516 @default.
- W4383746516 hasPrimaryLocation W43837465161 @default.
- W4383746516 hasRelatedWork W1497786226 @default.
- W4383746516 hasRelatedWork W1927038386 @default.
- W4383746516 hasRelatedWork W2040147310 @default.
- W4383746516 hasRelatedWork W2081434505 @default.
- W4383746516 hasRelatedWork W2127297471 @default.
- W4383746516 hasRelatedWork W2164681205 @default.
- W4383746516 hasRelatedWork W2185794229 @default.
- W4383746516 hasRelatedWork W2977912641 @default.
- W4383746516 hasRelatedWork W3089285523 @default.
- W4383746516 hasRelatedWork W4282574645 @default.
- W4383746516 isParatext "false" @default.
- W4383746516 isRetracted "false" @default.
- W4383746516 workType "article" @default.