Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383746752> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4383746752 abstract "Brain tumors account for having the lowest survival rate and being the most fatal cancer in the world. This makes detection and early diagnosis of the same to be of utmost importance. Classification of tumors depends on the shape, size, texture, and location. Magnetic Resonance Images (MRI) prove to be the most effective technique for distinguishing tumors. The main aim of the proposed work is to capture the distribution of unique features from the input MRI dataset images. These images are then synthesized using a generative model which classifies the dataset to detect the presence of a tumour in brain. Deep learning algorithms such as Convolutional Neural Network (CNN) help in classification of the different tumours. The proposed model is experimentally evaluated on three datasets. The suggested methods provide for the successful comparison and convincing performance. An accuracy of 98.02% was achieved with ResNet50 architecture and 98.32% with Xception architecture." @default.
- W4383746752 created "2023-07-11" @default.
- W4383746752 creator A5072373870 @default.
- W4383746752 creator A5092437609 @default.
- W4383746752 creator A5092437610 @default.
- W4383746752 creator A5092437611 @default.
- W4383746752 creator A5092437612 @default.
- W4383746752 date "2023-05-26" @default.
- W4383746752 modified "2023-10-16" @default.
- W4383746752 title "Brain Tumor Detection and Classification Using Deep Learning Approaches" @default.
- W4383746752 cites W2765490497 @default.
- W4383746752 cites W2996619397 @default.
- W4383746752 cites W3033436907 @default.
- W4383746752 cites W3082276753 @default.
- W4383746752 cites W3126464483 @default.
- W4383746752 cites W4205432032 @default.
- W4383746752 cites W4285161415 @default.
- W4383746752 cites W4286209802 @default.
- W4383746752 cites W4313054234 @default.
- W4383746752 doi "https://doi.org/10.1109/incet57972.2023.10169933" @default.
- W4383746752 hasPublicationYear "2023" @default.
- W4383746752 type Work @default.
- W4383746752 citedByCount "0" @default.
- W4383746752 crossrefType "proceedings-article" @default.
- W4383746752 hasAuthorship W4383746752A5072373870 @default.
- W4383746752 hasAuthorship W4383746752A5092437609 @default.
- W4383746752 hasAuthorship W4383746752A5092437610 @default.
- W4383746752 hasAuthorship W4383746752A5092437611 @default.
- W4383746752 hasAuthorship W4383746752A5092437612 @default.
- W4383746752 hasConcept C108583219 @default.
- W4383746752 hasConcept C115961682 @default.
- W4383746752 hasConcept C126838900 @default.
- W4383746752 hasConcept C143409427 @default.
- W4383746752 hasConcept C153180895 @default.
- W4383746752 hasConcept C154945302 @default.
- W4383746752 hasConcept C2781195486 @default.
- W4383746752 hasConcept C41008148 @default.
- W4383746752 hasConcept C71924100 @default.
- W4383746752 hasConcept C75294576 @default.
- W4383746752 hasConcept C81363708 @default.
- W4383746752 hasConceptScore W4383746752C108583219 @default.
- W4383746752 hasConceptScore W4383746752C115961682 @default.
- W4383746752 hasConceptScore W4383746752C126838900 @default.
- W4383746752 hasConceptScore W4383746752C143409427 @default.
- W4383746752 hasConceptScore W4383746752C153180895 @default.
- W4383746752 hasConceptScore W4383746752C154945302 @default.
- W4383746752 hasConceptScore W4383746752C2781195486 @default.
- W4383746752 hasConceptScore W4383746752C41008148 @default.
- W4383746752 hasConceptScore W4383746752C71924100 @default.
- W4383746752 hasConceptScore W4383746752C75294576 @default.
- W4383746752 hasConceptScore W4383746752C81363708 @default.
- W4383746752 hasLocation W43837467521 @default.
- W4383746752 hasOpenAccess W4383746752 @default.
- W4383746752 hasPrimaryLocation W43837467521 @default.
- W4383746752 hasRelatedWork W2084220915 @default.
- W4383746752 hasRelatedWork W2738221750 @default.
- W4383746752 hasRelatedWork W2766604260 @default.
- W4383746752 hasRelatedWork W2986507176 @default.
- W4383746752 hasRelatedWork W3018756076 @default.
- W4383746752 hasRelatedWork W3156786002 @default.
- W4383746752 hasRelatedWork W3160711233 @default.
- W4383746752 hasRelatedWork W3189091156 @default.
- W4383746752 hasRelatedWork W4309224979 @default.
- W4383746752 hasRelatedWork W564581980 @default.
- W4383746752 isParatext "false" @default.
- W4383746752 isRetracted "false" @default.
- W4383746752 workType "article" @default.