Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383748491> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4383748491 abstract "To address the issue of collecting a vast amount of labeled samples in traditional deep learning methods for apple defect classification, a metric learning-based method (Siamese Network model) is proposed in this paper for apple defect classification with few samples for training. Two ResNet-18 sub-networks with shared weights are used as feature extractors, and two apple images are formed into a sample pair at a time and input into the sub-network to obtain their respective high-dimensional feature vector representations, the Euclidean distance between them is calculated and the classes they belong to is determined based on the similarity. The dataset used for the experiments contains 550 labeled apple images (two categories: defective and non-defective), 330 images are allocated for training, 110 for validation, and 110 for testing. The results show that Siamese Network achieves better results than many classical models with few-sample datasets, with an accuracy of 91.82% and an AUC value of 0.984 on the test set, which validates the effectiveness of the method in this paper for apple defect classification with few samples." @default.
- W4383748491 created "2023-07-11" @default.
- W4383748491 creator A5079600167 @default.
- W4383748491 date "2023-05-12" @default.
- W4383748491 modified "2023-09-27" @default.
- W4383748491 title "Research on Small Sample Apple Defect Classification Method Based on Siamese Network" @default.
- W4383748491 cites W1985473486 @default.
- W4383748491 cites W2138621090 @default.
- W4383748491 cites W2157364932 @default.
- W4383748491 cites W2194775991 @default.
- W4383748491 cites W2618530766 @default.
- W4383748491 cites W2904376670 @default.
- W4383748491 cites W2904670397 @default.
- W4383748491 cites W2964121744 @default.
- W4383748491 cites W2976364010 @default.
- W4383748491 cites W3108545935 @default.
- W4383748491 cites W3164030817 @default.
- W4383748491 doi "https://doi.org/10.1109/cvidl58838.2023.10166796" @default.
- W4383748491 hasPublicationYear "2023" @default.
- W4383748491 type Work @default.
- W4383748491 citedByCount "0" @default.
- W4383748491 crossrefType "proceedings-article" @default.
- W4383748491 hasAuthorship W4383748491A5079600167 @default.
- W4383748491 hasConcept C103278499 @default.
- W4383748491 hasConcept C115961682 @default.
- W4383748491 hasConcept C120174047 @default.
- W4383748491 hasConcept C124101348 @default.
- W4383748491 hasConcept C127413603 @default.
- W4383748491 hasConcept C138885662 @default.
- W4383748491 hasConcept C153180895 @default.
- W4383748491 hasConcept C154945302 @default.
- W4383748491 hasConcept C176217482 @default.
- W4383748491 hasConcept C177264268 @default.
- W4383748491 hasConcept C185592680 @default.
- W4383748491 hasConcept C198531522 @default.
- W4383748491 hasConcept C199360897 @default.
- W4383748491 hasConcept C21547014 @default.
- W4383748491 hasConcept C2776401178 @default.
- W4383748491 hasConcept C33923547 @default.
- W4383748491 hasConcept C41008148 @default.
- W4383748491 hasConcept C41895202 @default.
- W4383748491 hasConcept C43617362 @default.
- W4383748491 hasConcept C83665646 @default.
- W4383748491 hasConceptScore W4383748491C103278499 @default.
- W4383748491 hasConceptScore W4383748491C115961682 @default.
- W4383748491 hasConceptScore W4383748491C120174047 @default.
- W4383748491 hasConceptScore W4383748491C124101348 @default.
- W4383748491 hasConceptScore W4383748491C127413603 @default.
- W4383748491 hasConceptScore W4383748491C138885662 @default.
- W4383748491 hasConceptScore W4383748491C153180895 @default.
- W4383748491 hasConceptScore W4383748491C154945302 @default.
- W4383748491 hasConceptScore W4383748491C176217482 @default.
- W4383748491 hasConceptScore W4383748491C177264268 @default.
- W4383748491 hasConceptScore W4383748491C185592680 @default.
- W4383748491 hasConceptScore W4383748491C198531522 @default.
- W4383748491 hasConceptScore W4383748491C199360897 @default.
- W4383748491 hasConceptScore W4383748491C21547014 @default.
- W4383748491 hasConceptScore W4383748491C2776401178 @default.
- W4383748491 hasConceptScore W4383748491C33923547 @default.
- W4383748491 hasConceptScore W4383748491C41008148 @default.
- W4383748491 hasConceptScore W4383748491C41895202 @default.
- W4383748491 hasConceptScore W4383748491C43617362 @default.
- W4383748491 hasConceptScore W4383748491C83665646 @default.
- W4383748491 hasLocation W43837484911 @default.
- W4383748491 hasOpenAccess W4383748491 @default.
- W4383748491 hasPrimaryLocation W43837484911 @default.
- W4383748491 hasRelatedWork W1530367432 @default.
- W4383748491 hasRelatedWork W2020613036 @default.
- W4383748491 hasRelatedWork W2040058659 @default.
- W4383748491 hasRelatedWork W2052253960 @default.
- W4383748491 hasRelatedWork W2147802381 @default.
- W4383748491 hasRelatedWork W2151753660 @default.
- W4383748491 hasRelatedWork W2354804986 @default.
- W4383748491 hasRelatedWork W2509918103 @default.
- W4383748491 hasRelatedWork W2785535669 @default.
- W4383748491 hasRelatedWork W2900794075 @default.
- W4383748491 isParatext "false" @default.
- W4383748491 isRetracted "false" @default.
- W4383748491 workType "article" @default.