Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383751808> ?p ?o ?g. }
- W4383751808 endingPage "77022" @default.
- W4383751808 startingPage "77009" @default.
- W4383751808 abstract "The novel coronavirus disease (COVID-19) pandemic is provoking a prevalent consequence on mental health because of less interaction among people, economic collapse, negativity, fear of losing jobs, and death of the near and dear ones. To express their mental state, people often are using social media as one of the preferred means. Due to reduced outdoor activities, people are spending more time on social media than usual and expressing their emotion of anxiety, fear, and depression. On a daily basis, about 2.5 quintillion bytes of data are generated on social media. Analyzing this big data can become an excellent means to evaluate the effect of COVID-19 on mental health. In this work, we have analyzed data from Twitter microblog (tweets) to find out the effect of COVID-19 on people’s mental health with a special focus on depression. We propose a novel pipeline, based on recurrent neural network (in the form of long short-term memory or LSTM) and convolutional neural network, capable of identifying depressive tweets with an accuracy of 99.42%. Preprocessed using various natural language processing techniques, the aim was to find out depressive emotion from these tweets. Analyzing over 571 thousand tweets posted between October 2019 and May 2020 by 482 users, a significant rise in depressing tweets was observed between February and May of 2020, which indicates as an impact of the long ongoing COVID-19 pandemic situation." @default.
- W4383751808 created "2023-07-11" @default.
- W4383751808 creator A5027525633 @default.
- W4383751808 creator A5029743023 @default.
- W4383751808 creator A5057247142 @default.
- W4383751808 creator A5067638918 @default.
- W4383751808 creator A5070138201 @default.
- W4383751808 creator A5071723828 @default.
- W4383751808 creator A5081206139 @default.
- W4383751808 creator A5086955492 @default.
- W4383751808 date "2023-01-01" @default.
- W4383751808 modified "2023-09-25" @default.
- W4383751808 title "A Hybrid Deep Learning Model to Predict the Impact of COVID-19 on Mental Health From Social Media Big Data" @default.
- W4383751808 cites W2058971120 @default.
- W4383751808 cites W2064675550 @default.
- W4383751808 cites W2112796928 @default.
- W4383751808 cites W2137296158 @default.
- W4383751808 cites W2154690800 @default.
- W4383751808 cites W2250553926 @default.
- W4383751808 cites W2741216199 @default.
- W4383751808 cites W2757894858 @default.
- W4383751808 cites W2766165088 @default.
- W4383751808 cites W2768956845 @default.
- W4383751808 cites W2771364297 @default.
- W4383751808 cites W2783844319 @default.
- W4383751808 cites W2806501109 @default.
- W4383751808 cites W2806881496 @default.
- W4383751808 cites W2809356716 @default.
- W4383751808 cites W2912654919 @default.
- W4383751808 cites W2927148761 @default.
- W4383751808 cites W2952732790 @default.
- W4383751808 cites W2959807905 @default.
- W4383751808 cites W2992806896 @default.
- W4383751808 cites W2993516307 @default.
- W4383751808 cites W2998557912 @default.
- W4383751808 cites W3007014740 @default.
- W4383751808 cites W3008469982 @default.
- W4383751808 cites W3009360413 @default.
- W4383751808 cites W3021820492 @default.
- W4383751808 cites W3024363383 @default.
- W4383751808 cites W3035119815 @default.
- W4383751808 cites W3040487886 @default.
- W4383751808 cites W3090401508 @default.
- W4383751808 cites W3090519764 @default.
- W4383751808 cites W3090817858 @default.
- W4383751808 cites W3091643389 @default.
- W4383751808 cites W3091780972 @default.
- W4383751808 cites W3091860120 @default.
- W4383751808 cites W3092631889 @default.
- W4383751808 cites W3100455055 @default.
- W4383751808 cites W3111174667 @default.
- W4383751808 cites W3111397582 @default.
- W4383751808 cites W3111685966 @default.
- W4383751808 cites W3119367840 @default.
- W4383751808 cites W3127786468 @default.
- W4383751808 cites W3134161433 @default.
- W4383751808 cites W3151064326 @default.
- W4383751808 cites W3154703026 @default.
- W4383751808 cites W4211028057 @default.
- W4383751808 cites W3022562998 @default.
- W4383751808 cites W3119595623 @default.
- W4383751808 cites W3137257643 @default.
- W4383751808 doi "https://doi.org/10.1109/access.2023.3293857" @default.
- W4383751808 hasPublicationYear "2023" @default.
- W4383751808 type Work @default.
- W4383751808 citedByCount "0" @default.
- W4383751808 crossrefType "journal-article" @default.
- W4383751808 hasAuthorship W4383751808A5027525633 @default.
- W4383751808 hasAuthorship W4383751808A5029743023 @default.
- W4383751808 hasAuthorship W4383751808A5057247142 @default.
- W4383751808 hasAuthorship W4383751808A5067638918 @default.
- W4383751808 hasAuthorship W4383751808A5070138201 @default.
- W4383751808 hasAuthorship W4383751808A5071723828 @default.
- W4383751808 hasAuthorship W4383751808A5081206139 @default.
- W4383751808 hasAuthorship W4383751808A5086955492 @default.
- W4383751808 hasBestOaLocation W43837518081 @default.
- W4383751808 hasConcept C108583219 @default.
- W4383751808 hasConcept C108827166 @default.
- W4383751808 hasConcept C118552586 @default.
- W4383751808 hasConcept C119857082 @default.
- W4383751808 hasConcept C124101348 @default.
- W4383751808 hasConcept C134362201 @default.
- W4383751808 hasConcept C136764020 @default.
- W4383751808 hasConcept C139719470 @default.
- W4383751808 hasConcept C142724271 @default.
- W4383751808 hasConcept C154945302 @default.
- W4383751808 hasConcept C15744967 @default.
- W4383751808 hasConcept C162324750 @default.
- W4383751808 hasConcept C2776867660 @default.
- W4383751808 hasConcept C2779134260 @default.
- W4383751808 hasConcept C3008058167 @default.
- W4383751808 hasConcept C41008148 @default.
- W4383751808 hasConcept C518677369 @default.
- W4383751808 hasConcept C524204448 @default.
- W4383751808 hasConcept C558461103 @default.
- W4383751808 hasConcept C66402592 @default.
- W4383751808 hasConcept C71924100 @default.
- W4383751808 hasConcept C75684735 @default.