Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383752013> ?p ?o ?g. }
- W4383752013 endingPage "6848" @default.
- W4383752013 startingPage "6836" @default.
- W4383752013 abstract "The job-shop scheduling problem (JSSP) is one of the best-known combinatorial optimization problems and is also an essential task in various sectors. In most real-world environments, scheduling is complex, stochastic, and dynamic, with inevitable uncertainties. Therefore, this article proposes a novel framework based on graph neural networks (GNNs) and deep reinforcement learning (DRL) to deal with the dynamic JSSP (DJSSP) with stochastic job arrivals and random machine breakdowns by minimizing the makespan. In the proposed framework, JSSP is formulated as a Markov decision process (MDP) and is associated with a disjunctive graph to encode the information of jobs and machines as nodes and arcs. We propose a GNN architecture to perform representation learning by transforming graph states into node embeddings. Then, the agent takes actions using a parameterized policy in terms of policy learning. Operations are used as actions, and an effective reward is well designed to guide the agent. We train our proposed method using proximal policy optimization (PPO), which helps minimize the loss function while ensuring that the deviation is relatively small. Extensive experiments show that the proposed method can achieve excellent results considering different criteria: efficiency, effectiveness, robustness, and generalizability. Once the proposed method is trained, it can directly schedule new JSSPs of different sizes and distributions in static benchmark tests, showing its excellent generalizability and effectiveness compared to another DRL-based method. Furthermore, the proposed method simultaneously maintains the win rate (a quantitative metric) and the scheduling score (a qualitative metric) when scheduling in dynamic environments." @default.
- W4383752013 created "2023-07-11" @default.
- W4383752013 creator A5031322893 @default.
- W4383752013 creator A5040415114 @default.
- W4383752013 date "2023-11-01" @default.
- W4383752013 modified "2023-10-18" @default.
- W4383752013 title "Dynamic Job-Shop Scheduling Problems Using Graph Neural Network and Deep Reinforcement Learning" @default.
- W4383752013 cites W1499199352 @default.
- W4383752013 cites W1797125234 @default.
- W4383752013 cites W1810830047 @default.
- W4383752013 cites W1984617225 @default.
- W4383752013 cites W2003746847 @default.
- W4383752013 cites W2004274396 @default.
- W4383752013 cites W2011649121 @default.
- W4383752013 cites W2018962813 @default.
- W4383752013 cites W2026153697 @default.
- W4383752013 cites W2035982916 @default.
- W4383752013 cites W2047719998 @default.
- W4383752013 cites W2063842491 @default.
- W4383752013 cites W2069721696 @default.
- W4383752013 cites W2071306171 @default.
- W4383752013 cites W2071736520 @default.
- W4383752013 cites W2079580250 @default.
- W4383752013 cites W2088304441 @default.
- W4383752013 cites W2145079270 @default.
- W4383752013 cites W2156391157 @default.
- W4383752013 cites W2157846217 @default.
- W4383752013 cites W2166928920 @default.
- W4383752013 cites W2167788072 @default.
- W4383752013 cites W2512486500 @default.
- W4383752013 cites W2618749399 @default.
- W4383752013 cites W2747092504 @default.
- W4383752013 cites W2785339424 @default.
- W4383752013 cites W2895861973 @default.
- W4383752013 cites W2899640738 @default.
- W4383752013 cites W2905334533 @default.
- W4383752013 cites W2997785591 @default.
- W4383752013 cites W3016938688 @default.
- W4383752013 cites W3048983622 @default.
- W4383752013 cites W3089255138 @default.
- W4383752013 cites W3092208345 @default.
- W4383752013 cites W3127320171 @default.
- W4383752013 cites W3128766876 @default.
- W4383752013 cites W3134664017 @default.
- W4383752013 cites W3152192037 @default.
- W4383752013 cites W3152893301 @default.
- W4383752013 cites W3168080668 @default.
- W4383752013 cites W3173555414 @default.
- W4383752013 cites W3197534999 @default.
- W4383752013 cites W4210257598 @default.
- W4383752013 doi "https://doi.org/10.1109/tsmc.2023.3287655" @default.
- W4383752013 hasPublicationYear "2023" @default.
- W4383752013 type Work @default.
- W4383752013 citedByCount "0" @default.
- W4383752013 crossrefType "journal-article" @default.
- W4383752013 hasAuthorship W4383752013A5031322893 @default.
- W4383752013 hasAuthorship W4383752013A5040415114 @default.
- W4383752013 hasConcept C105795698 @default.
- W4383752013 hasConcept C106189395 @default.
- W4383752013 hasConcept C107568181 @default.
- W4383752013 hasConcept C111919701 @default.
- W4383752013 hasConcept C119857082 @default.
- W4383752013 hasConcept C126255220 @default.
- W4383752013 hasConcept C154945302 @default.
- W4383752013 hasConcept C159886148 @default.
- W4383752013 hasConcept C206729178 @default.
- W4383752013 hasConcept C27158222 @default.
- W4383752013 hasConcept C33923547 @default.
- W4383752013 hasConcept C41008148 @default.
- W4383752013 hasConcept C50644808 @default.
- W4383752013 hasConcept C55416958 @default.
- W4383752013 hasConcept C68387754 @default.
- W4383752013 hasConcept C97541855 @default.
- W4383752013 hasConceptScore W4383752013C105795698 @default.
- W4383752013 hasConceptScore W4383752013C106189395 @default.
- W4383752013 hasConceptScore W4383752013C107568181 @default.
- W4383752013 hasConceptScore W4383752013C111919701 @default.
- W4383752013 hasConceptScore W4383752013C119857082 @default.
- W4383752013 hasConceptScore W4383752013C126255220 @default.
- W4383752013 hasConceptScore W4383752013C154945302 @default.
- W4383752013 hasConceptScore W4383752013C159886148 @default.
- W4383752013 hasConceptScore W4383752013C206729178 @default.
- W4383752013 hasConceptScore W4383752013C27158222 @default.
- W4383752013 hasConceptScore W4383752013C33923547 @default.
- W4383752013 hasConceptScore W4383752013C41008148 @default.
- W4383752013 hasConceptScore W4383752013C50644808 @default.
- W4383752013 hasConceptScore W4383752013C55416958 @default.
- W4383752013 hasConceptScore W4383752013C68387754 @default.
- W4383752013 hasConceptScore W4383752013C97541855 @default.
- W4383752013 hasFunder F4320331164 @default.
- W4383752013 hasIssue "11" @default.
- W4383752013 hasLocation W43837520131 @default.
- W4383752013 hasOpenAccess W4383752013 @default.
- W4383752013 hasPrimaryLocation W43837520131 @default.
- W4383752013 hasRelatedWork W1626977535 @default.
- W4383752013 hasRelatedWork W1985560493 @default.
- W4383752013 hasRelatedWork W2145363145 @default.
- W4383752013 hasRelatedWork W2341346307 @default.