Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383752694> ?p ?o ?g. }
- W4383752694 endingPage "1" @default.
- W4383752694 startingPage "1" @default.
- W4383752694 abstract "Low-count positron emission tomography (PET) imaging is challenging because of the ill-posedness of this inverse problem. Previous studies have demonstrated that deep learning (DL) holds promise for achieving improved low-count PET image quality. However, almost all data-driven DL methods suffer from fine structure degradation and blurring effects after denoising. Incorporating DL into the traditional iterative optimization model can effectively improve its image quality and recover fine structures, but little research has considered the full relaxation of the model, resulting in the performance of this hybrid model not being sufficiently exploited. In this paper, we propose a learning framework that deeply integrates DL and an alternating direction of multipliers method (ADMM)-based iterative optimization model. The innovative feature of this method is that we break the inherent forms of the fidelity operators and use neural networks to process them. The regularization term is deeply generalized. The proposed method is evaluated on simulated data and real data. Both the qualitative and quantitative results show that our proposed neural network method can outperform partial operator expansion-based neural network methods, neural network denoising methods and traditional methods." @default.
- W4383752694 created "2023-07-11" @default.
- W4383752694 creator A5008154375 @default.
- W4383752694 creator A5017223380 @default.
- W4383752694 creator A5022422213 @default.
- W4383752694 creator A5024767515 @default.
- W4383752694 creator A5025474414 @default.
- W4383752694 creator A5028843342 @default.
- W4383752694 creator A5039892918 @default.
- W4383752694 creator A5052755615 @default.
- W4383752694 creator A5057783778 @default.
- W4383752694 creator A5062704930 @default.
- W4383752694 creator A5066173871 @default.
- W4383752694 creator A5078397516 @default.
- W4383752694 creator A5090916642 @default.
- W4383752694 creator A5091410658 @default.
- W4383752694 date "2023-01-01" @default.
- W4383752694 modified "2023-09-25" @default.
- W4383752694 title "Deep Generalized Learning Model for PET Image Reconstruction" @default.
- W4383752694 doi "https://doi.org/10.1109/tmi.2023.3293836" @default.
- W4383752694 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37428658" @default.
- W4383752694 hasPublicationYear "2023" @default.
- W4383752694 type Work @default.
- W4383752694 citedByCount "0" @default.
- W4383752694 crossrefType "journal-article" @default.
- W4383752694 hasAuthorship W4383752694A5008154375 @default.
- W4383752694 hasAuthorship W4383752694A5017223380 @default.
- W4383752694 hasAuthorship W4383752694A5022422213 @default.
- W4383752694 hasAuthorship W4383752694A5024767515 @default.
- W4383752694 hasAuthorship W4383752694A5025474414 @default.
- W4383752694 hasAuthorship W4383752694A5028843342 @default.
- W4383752694 hasAuthorship W4383752694A5039892918 @default.
- W4383752694 hasAuthorship W4383752694A5052755615 @default.
- W4383752694 hasAuthorship W4383752694A5057783778 @default.
- W4383752694 hasAuthorship W4383752694A5062704930 @default.
- W4383752694 hasAuthorship W4383752694A5066173871 @default.
- W4383752694 hasAuthorship W4383752694A5078397516 @default.
- W4383752694 hasAuthorship W4383752694A5090916642 @default.
- W4383752694 hasAuthorship W4383752694A5091410658 @default.
- W4383752694 hasConcept C104317684 @default.
- W4383752694 hasConcept C108583219 @default.
- W4383752694 hasConcept C11413529 @default.
- W4383752694 hasConcept C115961682 @default.
- W4383752694 hasConcept C126255220 @default.
- W4383752694 hasConcept C134306372 @default.
- W4383752694 hasConcept C135252773 @default.
- W4383752694 hasConcept C138885662 @default.
- W4383752694 hasConcept C141379421 @default.
- W4383752694 hasConcept C153180895 @default.
- W4383752694 hasConcept C154945302 @default.
- W4383752694 hasConcept C158448853 @default.
- W4383752694 hasConcept C159694833 @default.
- W4383752694 hasConcept C163294075 @default.
- W4383752694 hasConcept C17020691 @default.
- W4383752694 hasConcept C185592680 @default.
- W4383752694 hasConcept C2776135515 @default.
- W4383752694 hasConcept C2776401178 @default.
- W4383752694 hasConcept C33923547 @default.
- W4383752694 hasConcept C41008148 @default.
- W4383752694 hasConcept C41895202 @default.
- W4383752694 hasConcept C50644808 @default.
- W4383752694 hasConcept C55020928 @default.
- W4383752694 hasConcept C55493867 @default.
- W4383752694 hasConcept C86339819 @default.
- W4383752694 hasConceptScore W4383752694C104317684 @default.
- W4383752694 hasConceptScore W4383752694C108583219 @default.
- W4383752694 hasConceptScore W4383752694C11413529 @default.
- W4383752694 hasConceptScore W4383752694C115961682 @default.
- W4383752694 hasConceptScore W4383752694C126255220 @default.
- W4383752694 hasConceptScore W4383752694C134306372 @default.
- W4383752694 hasConceptScore W4383752694C135252773 @default.
- W4383752694 hasConceptScore W4383752694C138885662 @default.
- W4383752694 hasConceptScore W4383752694C141379421 @default.
- W4383752694 hasConceptScore W4383752694C153180895 @default.
- W4383752694 hasConceptScore W4383752694C154945302 @default.
- W4383752694 hasConceptScore W4383752694C158448853 @default.
- W4383752694 hasConceptScore W4383752694C159694833 @default.
- W4383752694 hasConceptScore W4383752694C163294075 @default.
- W4383752694 hasConceptScore W4383752694C17020691 @default.
- W4383752694 hasConceptScore W4383752694C185592680 @default.
- W4383752694 hasConceptScore W4383752694C2776135515 @default.
- W4383752694 hasConceptScore W4383752694C2776401178 @default.
- W4383752694 hasConceptScore W4383752694C33923547 @default.
- W4383752694 hasConceptScore W4383752694C41008148 @default.
- W4383752694 hasConceptScore W4383752694C41895202 @default.
- W4383752694 hasConceptScore W4383752694C50644808 @default.
- W4383752694 hasConceptScore W4383752694C55020928 @default.
- W4383752694 hasConceptScore W4383752694C55493867 @default.
- W4383752694 hasConceptScore W4383752694C86339819 @default.
- W4383752694 hasFunder F4320321001 @default.
- W4383752694 hasLocation W43837526941 @default.
- W4383752694 hasLocation W43837526942 @default.
- W4383752694 hasOpenAccess W4383752694 @default.
- W4383752694 hasPrimaryLocation W43837526941 @default.
- W4383752694 hasRelatedWork W1964853359 @default.
- W4383752694 hasRelatedWork W1984012726 @default.
- W4383752694 hasRelatedWork W2057477010 @default.
- W4383752694 hasRelatedWork W2143905352 @default.