Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383759369> ?p ?o ?g. }
- W4383759369 endingPage "e0283396" @default.
- W4383759369 startingPage "e0283396" @default.
- W4383759369 abstract "The study of non-human animals' communication systems generally relies on the transcription of vocal sequences using a finite set of discrete units. This set is referred to as a vocal repertoire, which is specific to a species or a sub-group of a species. When conducted by human experts, the formal description of vocal repertoires can be laborious and/or biased. This motivates computerised assistance for this procedure, for which machine learning algorithms represent a good opportunity. Unsupervised clustering algorithms are suited for grouping close points together, provided a relevant representation. This paper therefore studies a new method for encoding vocalisations, allowing for automatic clustering to alleviate vocal repertoire characterisation. Borrowing from deep representation learning, we use a convolutional auto-encoder network to learn an abstract representation of vocalisations. We report on the quality of the learnt representation, as well as of state of the art methods, by quantifying their agreement with expert labelled vocalisation types from 8 datasets of other studies across 6 species (birds and marine mammals). With this benchmark, we demonstrate that using auto-encoders improves the relevance of vocalisation representation which serves repertoire characterisation using a very limited number of settings. We also publish a Python package for the bioacoustic community to train their own vocalisation auto-encoders or use a pretrained encoder to browse vocal repertoires and ease unit wise annotation." @default.
- W4383759369 created "2023-07-11" @default.
- W4383759369 creator A5012076785 @default.
- W4383759369 creator A5013266148 @default.
- W4383759369 creator A5019838252 @default.
- W4383759369 creator A5023319832 @default.
- W4383759369 date "2023-07-10" @default.
- W4383759369 modified "2023-10-12" @default.
- W4383759369 title "Deep audio embeddings for vocalisation clustering" @default.
- W4383759369 cites W151377110 @default.
- W4383759369 cites W1514601846 @default.
- W4383759369 cites W1966735109 @default.
- W4383759369 cites W1977286072 @default.
- W4383759369 cites W1995875735 @default.
- W4383759369 cites W1997119063 @default.
- W4383759369 cites W1997822529 @default.
- W4383759369 cites W2009946186 @default.
- W4383759369 cites W2016661916 @default.
- W4383759369 cites W2033570083 @default.
- W4383759369 cites W2050002720 @default.
- W4383759369 cites W2072570988 @default.
- W4383759369 cites W2087697213 @default.
- W4383759369 cites W2122424266 @default.
- W4383759369 cites W2130311562 @default.
- W4383759369 cites W2161445832 @default.
- W4383759369 cites W2166788494 @default.
- W4383759369 cites W2174827248 @default.
- W4383759369 cites W2178703291 @default.
- W4383759369 cites W2312279376 @default.
- W4383759369 cites W2331128040 @default.
- W4383759369 cites W2414895359 @default.
- W4383759369 cites W2506012936 @default.
- W4383759369 cites W2601243251 @default.
- W4383759369 cites W2610748997 @default.
- W4383759369 cites W2889326414 @default.
- W4383759369 cites W2894276679 @default.
- W4383759369 cites W2939574508 @default.
- W4383759369 cites W2962866891 @default.
- W4383759369 cites W2963881567 @default.
- W4383759369 cites W2972688077 @default.
- W4383759369 cites W3006348816 @default.
- W4383759369 cites W3093377669 @default.
- W4383759369 cites W3095433102 @default.
- W4383759369 cites W3096450234 @default.
- W4383759369 cites W3097940488 @default.
- W4383759369 cites W3101448915 @default.
- W4383759369 cites W3103145119 @default.
- W4383759369 cites W3136048210 @default.
- W4383759369 cites W3162317862 @default.
- W4383759369 cites W3191879170 @default.
- W4383759369 cites W3204915839 @default.
- W4383759369 cites W4220801857 @default.
- W4383759369 cites W4226051760 @default.
- W4383759369 cites W4281707734 @default.
- W4383759369 cites W914911106 @default.
- W4383759369 doi "https://doi.org/10.1371/journal.pone.0283396" @default.
- W4383759369 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37428759" @default.
- W4383759369 hasPublicationYear "2023" @default.
- W4383759369 type Work @default.
- W4383759369 citedByCount "0" @default.
- W4383759369 crossrefType "journal-article" @default.
- W4383759369 hasAuthorship W4383759369A5012076785 @default.
- W4383759369 hasAuthorship W4383759369A5013266148 @default.
- W4383759369 hasAuthorship W4383759369A5019838252 @default.
- W4383759369 hasAuthorship W4383759369A5023319832 @default.
- W4383759369 hasBestOaLocation W43837593691 @default.
- W4383759369 hasConcept C101738243 @default.
- W4383759369 hasConcept C108583219 @default.
- W4383759369 hasConcept C111919701 @default.
- W4383759369 hasConcept C119857082 @default.
- W4383759369 hasConcept C121332964 @default.
- W4383759369 hasConcept C154945302 @default.
- W4383759369 hasConcept C177264268 @default.
- W4383759369 hasConcept C17744445 @default.
- W4383759369 hasConcept C199360897 @default.
- W4383759369 hasConcept C199539241 @default.
- W4383759369 hasConcept C24890656 @default.
- W4383759369 hasConcept C2776359362 @default.
- W4383759369 hasConcept C2778473898 @default.
- W4383759369 hasConcept C41008148 @default.
- W4383759369 hasConcept C45273575 @default.
- W4383759369 hasConcept C519991488 @default.
- W4383759369 hasConcept C73555534 @default.
- W4383759369 hasConcept C94625758 @default.
- W4383759369 hasConceptScore W4383759369C101738243 @default.
- W4383759369 hasConceptScore W4383759369C108583219 @default.
- W4383759369 hasConceptScore W4383759369C111919701 @default.
- W4383759369 hasConceptScore W4383759369C119857082 @default.
- W4383759369 hasConceptScore W4383759369C121332964 @default.
- W4383759369 hasConceptScore W4383759369C154945302 @default.
- W4383759369 hasConceptScore W4383759369C177264268 @default.
- W4383759369 hasConceptScore W4383759369C17744445 @default.
- W4383759369 hasConceptScore W4383759369C199360897 @default.
- W4383759369 hasConceptScore W4383759369C199539241 @default.
- W4383759369 hasConceptScore W4383759369C24890656 @default.
- W4383759369 hasConceptScore W4383759369C2776359362 @default.
- W4383759369 hasConceptScore W4383759369C2778473898 @default.
- W4383759369 hasConceptScore W4383759369C41008148 @default.