Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383814440> ?p ?o ?g. }
- W4383814440 abstract "Abstract Understanding the variation of the Thermospheric Mass Density (TMD) is important for solar‐terrestrial physics and applications for spacecraft safety. The thermosphere, as an open system, is impacted by various space environment conditions and has complicated temporal and spatial features. Consequently, TMD observations contain a wealth of multi‐scale feature information. How to extract such information from observations is a challenge that requires ongoing research. It is vital to improving our understanding of the TMD features. Deep learning (DL) can learn complex representations directly from raw data, which makes it a compelling feature extraction and modeling tool for providing a novel perspective for TMD modeling. The Residual Network is used in this study to build a DL model with deep network architecture. The observations of CHAllenging Minisatellite Payload are utilized in the training phase, while the Gravity Recovery and Climate Experiment, High Accuracy Satellite Drag Model and Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar Extended model are used to evaluate the performance of the DL model. The results reveal that, compared with the shallow model of the typical Multi‐Layer Perceptron, the DL model can better extract multi‐scale features in the observations while retaining generalization capabilities. Controlled simulation experiments allow us to extract the effects of different physical processes, which improves the interpretability of the DL model. It is demonstrated that the DL model can discriminate the physical processes corresponding to the different space environment indices by simulating Equatorial Mass density Anomaly and geomagnetic storms." @default.
- W4383814440 created "2023-07-11" @default.
- W4383814440 creator A5006044524 @default.
- W4383814440 creator A5029885547 @default.
- W4383814440 creator A5032269255 @default.
- W4383814440 creator A5035814982 @default.
- W4383814440 creator A5057901877 @default.
- W4383814440 creator A5090086546 @default.
- W4383814440 date "2023-07-01" @default.
- W4383814440 modified "2023-10-17" @default.
- W4383814440 title "Improving the Extraction Ability of Thermospheric Mass Density Variations From Observational Data by Deep Learning" @default.
- W4383814440 cites W1487093456 @default.
- W4383814440 cites W1577923611 @default.
- W4383814440 cites W1678356000 @default.
- W4383814440 cites W1838419989 @default.
- W4383814440 cites W1922359568 @default.
- W4383814440 cites W1932847118 @default.
- W4383814440 cites W1970898821 @default.
- W4383814440 cites W1976995590 @default.
- W4383814440 cites W1983765279 @default.
- W4383814440 cites W1997912130 @default.
- W4383814440 cites W2012055032 @default.
- W4383814440 cites W2024275491 @default.
- W4383814440 cites W2025443082 @default.
- W4383814440 cites W2041821848 @default.
- W4383814440 cites W2045165955 @default.
- W4383814440 cites W2046005590 @default.
- W4383814440 cites W2047711734 @default.
- W4383814440 cites W2049882873 @default.
- W4383814440 cites W2058853268 @default.
- W4383814440 cites W2061516301 @default.
- W4383814440 cites W2066763583 @default.
- W4383814440 cites W2085807948 @default.
- W4383814440 cites W2089636165 @default.
- W4383814440 cites W2090894049 @default.
- W4383814440 cites W2096527018 @default.
- W4383814440 cites W2099070676 @default.
- W4383814440 cites W2104471278 @default.
- W4383814440 cites W2107878631 @default.
- W4383814440 cites W2124715982 @default.
- W4383814440 cites W2125847307 @default.
- W4383814440 cites W2138572931 @default.
- W4383814440 cites W2151296816 @default.
- W4383814440 cites W2194775991 @default.
- W4383814440 cites W2329533067 @default.
- W4383814440 cites W2549139847 @default.
- W4383814440 cites W2602413220 @default.
- W4383814440 cites W2741551539 @default.
- W4383814440 cites W2791371117 @default.
- W4383814440 cites W2886544924 @default.
- W4383814440 cites W2888565481 @default.
- W4383814440 cites W2899692854 @default.
- W4383814440 cites W2919115771 @default.
- W4383814440 cites W2922073769 @default.
- W4383814440 cites W2964121744 @default.
- W4383814440 cites W2972173145 @default.
- W4383814440 cites W2981731882 @default.
- W4383814440 cites W2989405262 @default.
- W4383814440 cites W2997428643 @default.
- W4383814440 cites W3011190405 @default.
- W4383814440 cites W3035517615 @default.
- W4383814440 cites W3093229420 @default.
- W4383814440 cites W3094845141 @default.
- W4383814440 cites W3104446864 @default.
- W4383814440 cites W3112737963 @default.
- W4383814440 cites W3135113780 @default.
- W4383814440 cites W3156375840 @default.
- W4383814440 cites W4214879257 @default.
- W4383814440 cites W4220895186 @default.
- W4383814440 cites W4221010190 @default.
- W4383814440 cites W4225377256 @default.
- W4383814440 cites W4281778105 @default.
- W4383814440 cites W4282925694 @default.
- W4383814440 cites W4290068817 @default.
- W4383814440 cites W4293584584 @default.
- W4383814440 cites W4296042710 @default.
- W4383814440 cites W4303857353 @default.
- W4383814440 doi "https://doi.org/10.1029/2022sw003376" @default.
- W4383814440 hasPublicationYear "2023" @default.
- W4383814440 type Work @default.
- W4383814440 citedByCount "0" @default.
- W4383814440 crossrefType "journal-article" @default.
- W4383814440 hasAuthorship W4383814440A5006044524 @default.
- W4383814440 hasAuthorship W4383814440A5029885547 @default.
- W4383814440 hasAuthorship W4383814440A5032269255 @default.
- W4383814440 hasAuthorship W4383814440A5035814982 @default.
- W4383814440 hasAuthorship W4383814440A5057901877 @default.
- W4383814440 hasAuthorship W4383814440A5090086546 @default.
- W4383814440 hasBestOaLocation W43838144401 @default.
- W4383814440 hasConcept C116403925 @default.
- W4383814440 hasConcept C119857082 @default.
- W4383814440 hasConcept C127313418 @default.
- W4383814440 hasConcept C131980223 @default.
- W4383814440 hasConcept C134066672 @default.
- W4383814440 hasConcept C154945302 @default.
- W4383814440 hasConcept C158379750 @default.
- W4383814440 hasConcept C31258907 @default.
- W4383814440 hasConcept C41008148 @default.
- W4383814440 hasConcept C554190296 @default.
- W4383814440 hasConcept C62649853 @default.