Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383816948> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4383816948 endingPage "424" @default.
- W4383816948 startingPage "395" @default.
- W4383816948 abstract "The Theory of Multiple Intelligences (TIM) addresses the concept of intelligence, in which their work together promotes the integral development of the individual. Despite not having been developed for educational purposes, TIM started to be widely used in this environment, helping in the teaching and learning process of students. The theory covers eight types of intelligences and has a qualitative character. However, studies appear with the intention of quantifying the approach of the Intelligences. Based on this approach, this article aims to quantitatively relate the intelligences to each other and verify how a prediction model reacts to this data set. For this, multiple regression and an artificial neural network (Multilayer Perceptron — MLP) were used. This research, of an applied nature, was carried out with students from the three grades of high school in a state public school in Fortaleza/CE. They answered a questionnaire with 80 questions based on the Multiple Intelligences itinerary developed by Armstrong (2001). A set of eight multiple regressions was created and the presented results show that there were small distortions in some coefficients when compared with the indices of the correlations between the variables. One of the plausible hypotheses is the size of the dataset. On the other hand, the prediction achieved with the MLP proved to be promising in terms of analyzing the development situation of any student. It is intended, in future studies, that the results can be implemented in a chatbot that offers, in a predictive way, prescriptions for the development of intelligences in the school environment." @default.
- W4383816948 created "2023-07-11" @default.
- W4383816948 creator A5007696905 @default.
- W4383816948 creator A5027106038 @default.
- W4383816948 creator A5087955504 @default.
- W4383816948 date "2023-07-10" @default.
- W4383816948 modified "2023-10-01" @default.
- W4383816948 title "ANALYSIS AND PREDICTION OF THE RELATIONSHIP BETWEEN MULTIPLE INTELLIGENCES IN TWO STEPS" @default.
- W4383816948 cites W2010389877 @default.
- W4383816948 cites W2035200825 @default.
- W4383816948 cites W2487770199 @default.
- W4383816948 cites W3040380717 @default.
- W4383816948 doi "https://doi.org/10.51249/gei.v4i03.1438" @default.
- W4383816948 hasPublicationYear "2023" @default.
- W4383816948 type Work @default.
- W4383816948 citedByCount "0" @default.
- W4383816948 crossrefType "journal-article" @default.
- W4383816948 hasAuthorship W4383816948A5007696905 @default.
- W4383816948 hasAuthorship W4383816948A5027106038 @default.
- W4383816948 hasAuthorship W4383816948A5087955504 @default.
- W4383816948 hasBestOaLocation W43838169481 @default.
- W4383816948 hasConcept C111919701 @default.
- W4383816948 hasConcept C119857082 @default.
- W4383816948 hasConcept C145420912 @default.
- W4383816948 hasConcept C154945302 @default.
- W4383816948 hasConcept C15744967 @default.
- W4383816948 hasConcept C177264268 @default.
- W4383816948 hasConcept C179717631 @default.
- W4383816948 hasConcept C193254068 @default.
- W4383816948 hasConcept C199360897 @default.
- W4383816948 hasConcept C2779041454 @default.
- W4383816948 hasConcept C41008148 @default.
- W4383816948 hasConcept C50644808 @default.
- W4383816948 hasConcept C60908668 @default.
- W4383816948 hasConcept C98045186 @default.
- W4383816948 hasConceptScore W4383816948C111919701 @default.
- W4383816948 hasConceptScore W4383816948C119857082 @default.
- W4383816948 hasConceptScore W4383816948C145420912 @default.
- W4383816948 hasConceptScore W4383816948C154945302 @default.
- W4383816948 hasConceptScore W4383816948C15744967 @default.
- W4383816948 hasConceptScore W4383816948C177264268 @default.
- W4383816948 hasConceptScore W4383816948C179717631 @default.
- W4383816948 hasConceptScore W4383816948C193254068 @default.
- W4383816948 hasConceptScore W4383816948C199360897 @default.
- W4383816948 hasConceptScore W4383816948C2779041454 @default.
- W4383816948 hasConceptScore W4383816948C41008148 @default.
- W4383816948 hasConceptScore W4383816948C50644808 @default.
- W4383816948 hasConceptScore W4383816948C60908668 @default.
- W4383816948 hasConceptScore W4383816948C98045186 @default.
- W4383816948 hasIssue "03" @default.
- W4383816948 hasLocation W43838169481 @default.
- W4383816948 hasOpenAccess W4383816948 @default.
- W4383816948 hasPrimaryLocation W43838169481 @default.
- W4383816948 hasRelatedWork W1501774291 @default.
- W4383816948 hasRelatedWork W1987886632 @default.
- W4383816948 hasRelatedWork W2924231309 @default.
- W4383816948 hasRelatedWork W2940336242 @default.
- W4383816948 hasRelatedWork W2941320171 @default.
- W4383816948 hasRelatedWork W3185179407 @default.
- W4383816948 hasRelatedWork W4231994957 @default.
- W4383816948 hasRelatedWork W4245248941 @default.
- W4383816948 hasRelatedWork W4285741730 @default.
- W4383816948 hasRelatedWork W2276110787 @default.
- W4383816948 hasVolume "4" @default.
- W4383816948 isParatext "false" @default.
- W4383816948 isRetracted "false" @default.
- W4383816948 workType "article" @default.