Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383818974> ?p ?o ?g. }
- W4383818974 endingPage "3442" @default.
- W4383818974 startingPage "3442" @default.
- W4383818974 abstract "Super-resolution (SR) technology plays a crucial role in improving the spatial resolution of remote sensing images so as to overcome the physical limitations of spaceborne imaging systems. Although deep convolutional neural networks have achieved promising results, most of them overlook the advantage of self-similarity information across different scales and high-dimensional features after the upsampling layers. To address the problem, we propose a hybrid-scale hierarchical transformer network (HSTNet) to achieve faithful remote sensing image SR. Specifically, we propose a hybrid-scale feature exploitation module to leverage the internal recursive information in single and cross scales within the images. To fully leverage the high-dimensional features and enhance discrimination, we designed a cross-scale enhancement transformer to capture long-range dependencies and efficiently calculate the relevance between high-dimension and low-dimension features. The proposed HSTNet achieves the best result in PSNR and SSIM with the UCMecred dataset and AID dataset. Comparative experiments demonstrate the effectiveness of the proposed methods and prove that the HSTNet outperforms the state-of-the-art competitors both in quantitative and qualitative evaluations." @default.
- W4383818974 created "2023-07-11" @default.
- W4383818974 creator A5020929631 @default.
- W4383818974 creator A5023674155 @default.
- W4383818974 creator A5026551711 @default.
- W4383818974 creator A5031285813 @default.
- W4383818974 creator A5041574741 @default.
- W4383818974 creator A5044626639 @default.
- W4383818974 date "2023-07-07" @default.
- W4383818974 modified "2023-09-26" @default.
- W4383818974 title "Hybrid-Scale Hierarchical Transformer for Remote Sensing Image Super-Resolution" @default.
- W4383818974 cites W1950594372 @default.
- W4383818974 cites W1976416062 @default.
- W4383818974 cites W1980038761 @default.
- W4383818974 cites W1992408872 @default.
- W4383818974 cites W2028790650 @default.
- W4383818974 cites W2058452082 @default.
- W4383818974 cites W2080875060 @default.
- W4383818974 cites W2102166818 @default.
- W4383818974 cites W2121058967 @default.
- W4383818974 cites W2157190232 @default.
- W4383818974 cites W2164551808 @default.
- W4383818974 cites W2169336016 @default.
- W4383818974 cites W2194775991 @default.
- W4383818974 cites W2207282238 @default.
- W4383818974 cites W2242218935 @default.
- W4383818974 cites W2288980073 @default.
- W4383818974 cites W233979554 @default.
- W4383818974 cites W2476548250 @default.
- W4383818974 cites W2503339013 @default.
- W4383818974 cites W2621121458 @default.
- W4383818974 cites W2793624040 @default.
- W4383818974 cites W2866634454 @default.
- W4383818974 cites W2920074116 @default.
- W4383818974 cites W2954930822 @default.
- W4383818974 cites W2963091558 @default.
- W4383818974 cites W2963372104 @default.
- W4383818974 cites W2963610452 @default.
- W4383818974 cites W2963704386 @default.
- W4383818974 cites W2964101377 @default.
- W4383818974 cites W3001201412 @default.
- W4383818974 cites W3007236234 @default.
- W4383818974 cites W3035022492 @default.
- W4383818974 cites W3046108465 @default.
- W4383818974 cites W3069245681 @default.
- W4383818974 cites W3105577662 @default.
- W4383818974 cites W3135592580 @default.
- W4383818974 cites W3207918547 @default.
- W4383818974 cites W4205355690 @default.
- W4383818974 cites W4281481798 @default.
- W4383818974 cites W4285411567 @default.
- W4383818974 cites W4287020683 @default.
- W4383818974 cites W4292829111 @default.
- W4383818974 cites W4319300717 @default.
- W4383818974 cites W4320177228 @default.
- W4383818974 cites W4321381231 @default.
- W4383818974 cites W4364361206 @default.
- W4383818974 cites W4381327683 @default.
- W4383818974 cites W54257720 @default.
- W4383818974 doi "https://doi.org/10.3390/rs15133442" @default.
- W4383818974 hasPublicationYear "2023" @default.
- W4383818974 type Work @default.
- W4383818974 citedByCount "0" @default.
- W4383818974 crossrefType "journal-article" @default.
- W4383818974 hasAuthorship W4383818974A5020929631 @default.
- W4383818974 hasAuthorship W4383818974A5023674155 @default.
- W4383818974 hasAuthorship W4383818974A5026551711 @default.
- W4383818974 hasAuthorship W4383818974A5031285813 @default.
- W4383818974 hasAuthorship W4383818974A5041574741 @default.
- W4383818974 hasAuthorship W4383818974A5044626639 @default.
- W4383818974 hasBestOaLocation W43838189741 @default.
- W4383818974 hasConcept C110384440 @default.
- W4383818974 hasConcept C115961682 @default.
- W4383818974 hasConcept C124101348 @default.
- W4383818974 hasConcept C153083717 @default.
- W4383818974 hasConcept C153180895 @default.
- W4383818974 hasConcept C154945302 @default.
- W4383818974 hasConcept C41008148 @default.
- W4383818974 hasConcept C81363708 @default.
- W4383818974 hasConceptScore W4383818974C110384440 @default.
- W4383818974 hasConceptScore W4383818974C115961682 @default.
- W4383818974 hasConceptScore W4383818974C124101348 @default.
- W4383818974 hasConceptScore W4383818974C153083717 @default.
- W4383818974 hasConceptScore W4383818974C153180895 @default.
- W4383818974 hasConceptScore W4383818974C154945302 @default.
- W4383818974 hasConceptScore W4383818974C41008148 @default.
- W4383818974 hasConceptScore W4383818974C81363708 @default.
- W4383818974 hasIssue "13" @default.
- W4383818974 hasLocation W43838189741 @default.
- W4383818974 hasOpenAccess W4383818974 @default.
- W4383818974 hasPrimaryLocation W43838189741 @default.
- W4383818974 hasRelatedWork W2175746458 @default.
- W4383818974 hasRelatedWork W2732542196 @default.
- W4383818974 hasRelatedWork W2738221750 @default.
- W4383818974 hasRelatedWork W2760085659 @default.
- W4383818974 hasRelatedWork W2767651786 @default.
- W4383818974 hasRelatedWork W2883200793 @default.
- W4383818974 hasRelatedWork W2912288872 @default.