Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383872493> ?p ?o ?g. }
- W4383872493 endingPage "5587" @default.
- W4383872493 startingPage "5574" @default.
- W4383872493 abstract "Glioblastoma is the most common malignant primary brain tumor with poor overall survival. Magnetic resonance imaging (MRI) is the main imaging modality for glioblastoma but has inherent shortcomings. The molecular and cellular basis of MR signals is incompletely understood. We established a ground truth-based image analysis platform to coregister MRI and light sheet microscopy (LSM) data to each other and to an anatomic reference atlas for quantification of 20 predefined anatomic subregions. Our pipeline also includes a segmentation and quantification approach for single myeloid cells in entire LSM datasets. This method was applied to three preclinical glioma models in male and female mice (GL261, U87MG, and S24), which exhibit different key features of the human glioma. Multiparametric MR data including T2-weighted sequences, diffusion tensor imaging, T2 and T2* relaxometry were acquired. Following tissue clearing, LSM focused on the analysis of tumor cell density, microvasculature, and innate immune cell infiltration. Correlated analysis revealed differences in quantitative MRI metrics between the tumor-bearing and the contralateral hemisphere. LSM identified tumor subregions that differed in their MRI characteristics, indicating tumor heterogeneity. Interestingly, MRI signatures, defined as unique combinations of different MRI parameters, differed greatly between the models. The direct correlation of MRI and LSM allows an in-depth characterization of preclinical glioma and can be used to decipher the structural, cellular, and, likely, molecular basis of tumoral MRI biomarkers. Our approach may be applied in other preclinical brain tumor or neurologic disease models, and the derived MRI signatures could ultimately inform image interpretation in a clinical setting.SIGNIFICANCE STATEMENT We established a histologic ground truth-based approach for MR image analyses and tested this method in three preclinical glioma models exhibiting different features of glioblastoma. Coregistration of light sheet microscopy to MRI allowed for an evaluation of quantitative MRI data in histologically distinct tumor subregions. Coregistration to a mouse brain atlas enabled a regional comparison of MRI parameters with a histologically informed interpretation of the results. Our approach is transferable to other preclinical models of brain tumors and further neurologic disorders. The method can be used to decipher the structural, cellular, and molecular basis of MRI signal characteristics. Ultimately, information derived from such analyses could strengthen the neuroradiological evaluation of glioblastoma as they enhance the interpretation of MRI data." @default.
- W4383872493 created "2023-07-12" @default.
- W4383872493 creator A5006840238 @default.
- W4383872493 creator A5010760040 @default.
- W4383872493 creator A5011103119 @default.
- W4383872493 creator A5011740108 @default.
- W4383872493 creator A5019876508 @default.
- W4383872493 creator A5022667441 @default.
- W4383872493 creator A5024016726 @default.
- W4383872493 creator A5025594062 @default.
- W4383872493 creator A5027224009 @default.
- W4383872493 creator A5033117855 @default.
- W4383872493 creator A5037907056 @default.
- W4383872493 creator A5067952761 @default.
- W4383872493 creator A5077577029 @default.
- W4383872493 creator A5078396456 @default.
- W4383872493 creator A5079482117 @default.
- W4383872493 creator A5080317517 @default.
- W4383872493 creator A5080482957 @default.
- W4383872493 creator A5085800750 @default.
- W4383872493 creator A5086931257 @default.
- W4383872493 creator A5090759884 @default.
- W4383872493 date "2023-07-10" @default.
- W4383872493 modified "2023-10-17" @default.
- W4383872493 title "A Cellular Ground Truth to Develop MRI Signatures in Glioma Models by Correlative Light Sheet Microscopy and Atlas-Based Coregistration" @default.
- W4383872493 cites W1978590690 @default.
- W4383872493 cites W1978593493 @default.
- W4383872493 cites W2005574379 @default.
- W4383872493 cites W2010956007 @default.
- W4383872493 cites W2020217107 @default.
- W4383872493 cites W2026616100 @default.
- W4383872493 cites W2036044314 @default.
- W4383872493 cites W2060795278 @default.
- W4383872493 cites W2088322547 @default.
- W4383872493 cites W2089798586 @default.
- W4383872493 cites W2106892173 @default.
- W4383872493 cites W2128130529 @default.
- W4383872493 cites W2131051578 @default.
- W4383872493 cites W2161057248 @default.
- W4383872493 cites W2254102990 @default.
- W4383872493 cites W2326059109 @default.
- W4383872493 cites W2789650135 @default.
- W4383872493 cites W2895680199 @default.
- W4383872493 cites W2906442564 @default.
- W4383872493 cites W2908736514 @default.
- W4383872493 cites W2925027262 @default.
- W4383872493 cites W2941627335 @default.
- W4383872493 cites W2964748591 @default.
- W4383872493 cites W2973686658 @default.
- W4383872493 cites W2975634117 @default.
- W4383872493 cites W2990039983 @default.
- W4383872493 cites W3005867992 @default.
- W4383872493 cites W3021818310 @default.
- W4383872493 cites W3034067600 @default.
- W4383872493 cites W3092234123 @default.
- W4383872493 cites W3163576330 @default.
- W4383872493 cites W3185949010 @default.
- W4383872493 cites W4211111396 @default.
- W4383872493 cites W4224231482 @default.
- W4383872493 doi "https://doi.org/10.1523/jneurosci.1470-22.2023" @default.
- W4383872493 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37429718" @default.
- W4383872493 hasPublicationYear "2023" @default.
- W4383872493 type Work @default.
- W4383872493 citedByCount "0" @default.
- W4383872493 crossrefType "journal-article" @default.
- W4383872493 hasAuthorship W4383872493A5006840238 @default.
- W4383872493 hasAuthorship W4383872493A5010760040 @default.
- W4383872493 hasAuthorship W4383872493A5011103119 @default.
- W4383872493 hasAuthorship W4383872493A5011740108 @default.
- W4383872493 hasAuthorship W4383872493A5019876508 @default.
- W4383872493 hasAuthorship W4383872493A5022667441 @default.
- W4383872493 hasAuthorship W4383872493A5024016726 @default.
- W4383872493 hasAuthorship W4383872493A5025594062 @default.
- W4383872493 hasAuthorship W4383872493A5027224009 @default.
- W4383872493 hasAuthorship W4383872493A5033117855 @default.
- W4383872493 hasAuthorship W4383872493A5037907056 @default.
- W4383872493 hasAuthorship W4383872493A5067952761 @default.
- W4383872493 hasAuthorship W4383872493A5077577029 @default.
- W4383872493 hasAuthorship W4383872493A5078396456 @default.
- W4383872493 hasAuthorship W4383872493A5079482117 @default.
- W4383872493 hasAuthorship W4383872493A5080317517 @default.
- W4383872493 hasAuthorship W4383872493A5080482957 @default.
- W4383872493 hasAuthorship W4383872493A5085800750 @default.
- W4383872493 hasAuthorship W4383872493A5086931257 @default.
- W4383872493 hasAuthorship W4383872493A5090759884 @default.
- W4383872493 hasConcept C126838900 @default.
- W4383872493 hasConcept C142724271 @default.
- W4383872493 hasConcept C143409427 @default.
- W4383872493 hasConcept C146849305 @default.
- W4383872493 hasConcept C149550507 @default.
- W4383872493 hasConcept C154945302 @default.
- W4383872493 hasConcept C169760540 @default.
- W4383872493 hasConcept C2776194525 @default.
- W4383872493 hasConcept C2777670902 @default.
- W4383872493 hasConcept C2778227246 @default.
- W4383872493 hasConcept C2779130545 @default.
- W4383872493 hasConcept C2780972224 @default.
- W4383872493 hasConcept C41008148 @default.