Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383873054> ?p ?o ?g. }
- W4383873054 abstract "Aims Adverse drug events (ADEs) are a major threat to inpatients in the United States of America (USA). It is unknown how well machine learning (ML) is able to predict whether or not a patient will suffer from an ADE during hospital stay based on data available at hospital admission for emergency department patients of all ages (binary classification task). It is further unknown whether ML is able to outperform logistic regression (LR) in doing so, and which variables are the most important predictors. Methods In this study, 5 ML models— namely a random forest, gradient boosting machine (GBM), ridge regression, least absolute shrinkage and selection operator (LASSO) regression, and elastic net regression—as well as a LR were trained and tested for the prediction of inpatient ADEs identified using ICD‐10‐CM codes based on comprehensive previous work in a diverse population. In total, 210 181 observations from patients who were admitted to a large tertiary care hospital after emergency department stay between 2011 and 2019 were included. The area under the receiver operating characteristics curve (AUC) and AUC–precision‐recall (AUC‐PR) were used as primary performance indicators. Results Tree‐based models performed best with respect to AUC and AUC‐PR. The gradient boosting machine (GBM) reached an AUC of 0.747 (95% confidence interval (CI): 0.735 to 0.759) and an AUC‐PR of 0.134 (95% CI: 0.131 to 0.137) on unforeseen test data, while the random forest reached an AUC of 0.743 (95% CI: 0.731 to 0.755) and an AUC‐PR of 0.139 (95% CI: 0.135 to 0.142), respectively. ML statistically significantly outperformed LR both on AUC and AUC‐PR. Nonetheless, overall, models did not differ much with respect to their performance. Most important predictors were admission type, temperature and chief complaint for the best performing model (GBM). Conclusions The study demonstrated a first application of ML to predict inpatient ADEs based on ICD‐10‐CM codes, and a comparison with LR. Future research should address concerns arising from low precision and related problems." @default.
- W4383873054 created "2023-07-12" @default.
- W4383873054 creator A5080394526 @default.
- W4383873054 date "2023-08-01" @default.
- W4383873054 modified "2023-10-17" @default.
- W4383873054 title "Machine learning as a tool to identify inpatients who are not at risk of adverse drug events in a large dataset of a tertiary care hospital in the USA" @default.
- W4383873054 cites W1538449476 @default.
- W4383873054 cites W1678356000 @default.
- W4383873054 cites W1837137701 @default.
- W4383873054 cites W1879679293 @default.
- W4383873054 cites W1937322069 @default.
- W4383873054 cites W1979446181 @default.
- W4383873054 cites W1983011741 @default.
- W4383873054 cites W1994307947 @default.
- W4383873054 cites W1998495168 @default.
- W4383873054 cites W2008746016 @default.
- W4383873054 cites W2012028554 @default.
- W4383873054 cites W2020335896 @default.
- W4383873054 cites W2022909531 @default.
- W4383873054 cites W2038610812 @default.
- W4383873054 cites W2064186732 @default.
- W4383873054 cites W2085074082 @default.
- W4383873054 cites W2092626498 @default.
- W4383873054 cites W2110922423 @default.
- W4383873054 cites W2119910794 @default.
- W4383873054 cites W2135840157 @default.
- W4383873054 cites W2142806174 @default.
- W4383873054 cites W2148009520 @default.
- W4383873054 cites W2154039449 @default.
- W4383873054 cites W2157825442 @default.
- W4383873054 cites W2162800060 @default.
- W4383873054 cites W2163839294 @default.
- W4383873054 cites W2169565426 @default.
- W4383873054 cites W2195453971 @default.
- W4383873054 cites W2223903364 @default.
- W4383873054 cites W2328120369 @default.
- W4383873054 cites W2328176404 @default.
- W4383873054 cites W2581082906 @default.
- W4383873054 cites W2591213951 @default.
- W4383873054 cites W2606442136 @default.
- W4383873054 cites W2741011090 @default.
- W4383873054 cites W2770266728 @default.
- W4383873054 cites W2782601068 @default.
- W4383873054 cites W2783196494 @default.
- W4383873054 cites W2790690319 @default.
- W4383873054 cites W2896600084 @default.
- W4383873054 cites W2899682645 @default.
- W4383873054 cites W2913997948 @default.
- W4383873054 cites W2946464972 @default.
- W4383873054 cites W3001777144 @default.
- W4383873054 cites W3005333799 @default.
- W4383873054 cites W3044481727 @default.
- W4383873054 cites W3159448021 @default.
- W4383873054 cites W3170940710 @default.
- W4383873054 cites W3204965937 @default.
- W4383873054 cites W34170805 @default.
- W4383873054 cites W4292550096 @default.
- W4383873054 cites W4294457161 @default.
- W4383873054 cites W4318185117 @default.
- W4383873054 cites W61851215 @default.
- W4383873054 doi "https://doi.org/10.1111/bcp.15846" @default.
- W4383873054 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37430382" @default.
- W4383873054 hasPublicationYear "2023" @default.
- W4383873054 type Work @default.
- W4383873054 citedByCount "0" @default.
- W4383873054 crossrefType "journal-article" @default.
- W4383873054 hasAuthorship W4383873054A5080394526 @default.
- W4383873054 hasBestOaLocation W43838730541 @default.
- W4383873054 hasConcept C118552586 @default.
- W4383873054 hasConcept C119857082 @default.
- W4383873054 hasConcept C126322002 @default.
- W4383873054 hasConcept C148483581 @default.
- W4383873054 hasConcept C151956035 @default.
- W4383873054 hasConcept C154945302 @default.
- W4383873054 hasConcept C169258074 @default.
- W4383873054 hasConcept C194828623 @default.
- W4383873054 hasConcept C197934379 @default.
- W4383873054 hasConcept C203868755 @default.
- W4383873054 hasConcept C2780724011 @default.
- W4383873054 hasConcept C2908647359 @default.
- W4383873054 hasConcept C41008148 @default.
- W4383873054 hasConcept C44249647 @default.
- W4383873054 hasConcept C58471807 @default.
- W4383873054 hasConcept C70153297 @default.
- W4383873054 hasConcept C71924100 @default.
- W4383873054 hasConcept C76318530 @default.
- W4383873054 hasConcept C99454951 @default.
- W4383873054 hasConceptScore W4383873054C118552586 @default.
- W4383873054 hasConceptScore W4383873054C119857082 @default.
- W4383873054 hasConceptScore W4383873054C126322002 @default.
- W4383873054 hasConceptScore W4383873054C148483581 @default.
- W4383873054 hasConceptScore W4383873054C151956035 @default.
- W4383873054 hasConceptScore W4383873054C154945302 @default.
- W4383873054 hasConceptScore W4383873054C169258074 @default.
- W4383873054 hasConceptScore W4383873054C194828623 @default.
- W4383873054 hasConceptScore W4383873054C197934379 @default.
- W4383873054 hasConceptScore W4383873054C203868755 @default.
- W4383873054 hasConceptScore W4383873054C2780724011 @default.
- W4383873054 hasConceptScore W4383873054C2908647359 @default.
- W4383873054 hasConceptScore W4383873054C41008148 @default.