Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383888093> ?p ?o ?g. }
- W4383888093 endingPage "489" @default.
- W4383888093 startingPage "478" @default.
- W4383888093 abstract "Background Increasing evidence indicates that the immune response plays a critical role in the development of head and neck cancer (HNC). We aimed to develop an immune-related gene signature and evaluate its prognostic value in patients with HNC. Methods We retrieved an HNC cohort from The Cancer Genome Atlas database and divided the samples into high-risk and low-risk groups based on the median of the immune and stromal scores. We performed Venn and Cox analyses to identify the immune-related DEGs to use in our prognostic model. We evaluated the correlation between the model and immune-cell infiltration and validated the prognostic value of the model by applying it to 2 external HNC cohorts. Results We identified 7 DEGs—CCR4, WDFY4, VCAM1, LYZ, VSIG4, XIRP1, and CMKLR1—to use in our prognostic model and validated the model by applying it to 2 external HNC cohorts. We found that risk scores based on the model could reflect the status of the tumor microenvironment and that VSIG4 might be associated with lymph node metastasis in HNC. Conclusions We developed a highly accurate immune-related prognostic 7-gene model in HNC predication, indicating that these 7 genes play critical roles in the tumor microenvironment. Increasing evidence indicates that the immune response plays a critical role in the development of head and neck cancer (HNC). We aimed to develop an immune-related gene signature and evaluate its prognostic value in patients with HNC. We retrieved an HNC cohort from The Cancer Genome Atlas database and divided the samples into high-risk and low-risk groups based on the median of the immune and stromal scores. We performed Venn and Cox analyses to identify the immune-related DEGs to use in our prognostic model. We evaluated the correlation between the model and immune-cell infiltration and validated the prognostic value of the model by applying it to 2 external HNC cohorts. We identified 7 DEGs—CCR4, WDFY4, VCAM1, LYZ, VSIG4, XIRP1, and CMKLR1—to use in our prognostic model and validated the model by applying it to 2 external HNC cohorts. We found that risk scores based on the model could reflect the status of the tumor microenvironment and that VSIG4 might be associated with lymph node metastasis in HNC. We developed a highly accurate immune-related prognostic 7-gene model in HNC predication, indicating that these 7 genes play critical roles in the tumor microenvironment." @default.
- W4383888093 created "2023-07-12" @default.
- W4383888093 creator A5027916078 @default.
- W4383888093 creator A5040523311 @default.
- W4383888093 creator A5046661488 @default.
- W4383888093 creator A5064646560 @default.
- W4383888093 creator A5065666529 @default.
- W4383888093 creator A5078104122 @default.
- W4383888093 creator A5091520016 @default.
- W4383888093 date "2023-10-01" @default.
- W4383888093 modified "2023-10-14" @default.
- W4383888093 title "Identification of immune-related genes in the prognosis of head and neck cancer using a novel prognostic signature model" @default.
- W4383888093 cites W1986241711 @default.
- W4383888093 cites W2121937591 @default.
- W4383888093 cites W2130430382 @default.
- W4383888093 cites W2411892481 @default.
- W4383888093 cites W2412519233 @default.
- W4383888093 cites W2564671332 @default.
- W4383888093 cites W2589339886 @default.
- W4383888093 cites W2612056627 @default.
- W4383888093 cites W2739998491 @default.
- W4383888093 cites W2765224588 @default.
- W4383888093 cites W2767377392 @default.
- W4383888093 cites W2888554163 @default.
- W4383888093 cites W2902283448 @default.
- W4383888093 cites W2904338307 @default.
- W4383888093 cites W2944714571 @default.
- W4383888093 cites W2946173685 @default.
- W4383888093 cites W2946661965 @default.
- W4383888093 cites W2953163895 @default.
- W4383888093 cites W2963512825 @default.
- W4383888093 cites W2966783642 @default.
- W4383888093 cites W3024183259 @default.
- W4383888093 cites W3024407124 @default.
- W4383888093 cites W3033041522 @default.
- W4383888093 cites W3038106231 @default.
- W4383888093 cites W3040334128 @default.
- W4383888093 cites W3044783254 @default.
- W4383888093 cites W3044993009 @default.
- W4383888093 cites W3080652210 @default.
- W4383888093 cites W3087235891 @default.
- W4383888093 cites W3200339232 @default.
- W4383888093 cites W3200728736 @default.
- W4383888093 cites W4200122716 @default.
- W4383888093 cites W4214666270 @default.
- W4383888093 cites W4285084510 @default.
- W4383888093 cites W4293736565 @default.
- W4383888093 cites W4307906701 @default.
- W4383888093 cites W4307946096 @default.
- W4383888093 cites W4308191318 @default.
- W4383888093 cites W4310070998 @default.
- W4383888093 doi "https://doi.org/10.1016/j.oooo.2023.07.003" @default.
- W4383888093 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37620228" @default.
- W4383888093 hasPublicationYear "2023" @default.
- W4383888093 type Work @default.
- W4383888093 citedByCount "0" @default.
- W4383888093 crossrefType "journal-article" @default.
- W4383888093 hasAuthorship W4383888093A5027916078 @default.
- W4383888093 hasAuthorship W4383888093A5040523311 @default.
- W4383888093 hasAuthorship W4383888093A5046661488 @default.
- W4383888093 hasAuthorship W4383888093A5064646560 @default.
- W4383888093 hasAuthorship W4383888093A5065666529 @default.
- W4383888093 hasAuthorship W4383888093A5078104122 @default.
- W4383888093 hasAuthorship W4383888093A5091520016 @default.
- W4383888093 hasConcept C121608353 @default.
- W4383888093 hasConcept C126322002 @default.
- W4383888093 hasConcept C143998085 @default.
- W4383888093 hasConcept C203014093 @default.
- W4383888093 hasConcept C2776107976 @default.
- W4383888093 hasConcept C2776530083 @default.
- W4383888093 hasConcept C50382708 @default.
- W4383888093 hasConcept C71924100 @default.
- W4383888093 hasConcept C72563966 @default.
- W4383888093 hasConcept C8891405 @default.
- W4383888093 hasConceptScore W4383888093C121608353 @default.
- W4383888093 hasConceptScore W4383888093C126322002 @default.
- W4383888093 hasConceptScore W4383888093C143998085 @default.
- W4383888093 hasConceptScore W4383888093C203014093 @default.
- W4383888093 hasConceptScore W4383888093C2776107976 @default.
- W4383888093 hasConceptScore W4383888093C2776530083 @default.
- W4383888093 hasConceptScore W4383888093C50382708 @default.
- W4383888093 hasConceptScore W4383888093C71924100 @default.
- W4383888093 hasConceptScore W4383888093C72563966 @default.
- W4383888093 hasConceptScore W4383888093C8891405 @default.
- W4383888093 hasIssue "4" @default.
- W4383888093 hasLocation W43838880931 @default.
- W4383888093 hasLocation W43838880932 @default.
- W4383888093 hasOpenAccess W4383888093 @default.
- W4383888093 hasPrimaryLocation W43838880931 @default.
- W4383888093 hasRelatedWork W1989183913 @default.
- W4383888093 hasRelatedWork W2054181537 @default.
- W4383888093 hasRelatedWork W2076245797 @default.
- W4383888093 hasRelatedWork W2079678666 @default.
- W4383888093 hasRelatedWork W2099667649 @default.
- W4383888093 hasRelatedWork W2529376761 @default.
- W4383888093 hasRelatedWork W2553255798 @default.
- W4383888093 hasRelatedWork W2603773853 @default.
- W4383888093 hasRelatedWork W4304808194 @default.