Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383896363> ?p ?o ?g. }
- W4383896363 endingPage "469" @default.
- W4383896363 startingPage "450" @default.
- W4383896363 abstract "As climate-driven risks for the world’s coastlines increase, understanding and predicting morphological changes as well as developing efficient systems for coastal forecast has become of the foremost importance for adaptation to climate change. Artificial Intelligence is a powerful technology that has been rapidly evolving recently and can offer new means of analysis for the coastal science field. Yet, the potential of these technologies for coastal geomorphology remains relatively unexplored with respect to other scientific fields. This article investigates the use of Artificial Neural Networks and Bayesian Networks in combination with fully coupled hydrodynamics and morphological models (Delft3D) for predicting morphological changes and sediment transport along coastal systems. Two sets of Artificial Intelligence models were tested, one set relying on localized modeling outputs or localized data sources and another set having reduced dependency from modeling outputs and, once trained, solely relying on boundary conditions and coastline geometry. The first set of models provides regression values greater than 0.95 and 0.86 for training and testing, respectively. The second set of reduced dependency models provides regression values greater than 0.84 and 0.76 for training and testing, respectively. Our results highlight the potential of AI and statistical models for coastal applications." @default.
- W4383896363 created "2023-07-12" @default.
- W4383896363 creator A5030272889 @default.
- W4383896363 creator A5090930412 @default.
- W4383896363 date "2023-07-03" @default.
- W4383896363 modified "2023-10-17" @default.
- W4383896363 title "Coastal forecast through coupling of Artificial Intelligence and hydro-morphodynamical modelling" @default.
- W4383896363 cites W1418204277 @default.
- W4383896363 cites W1587023587 @default.
- W4383896363 cites W1618305965 @default.
- W4383896363 cites W1965204367 @default.
- W4383896363 cites W1968836297 @default.
- W4383896363 cites W1978941084 @default.
- W4383896363 cites W1987564911 @default.
- W4383896363 cites W1996819337 @default.
- W4383896363 cites W2028132054 @default.
- W4383896363 cites W2039827162 @default.
- W4383896363 cites W2044564219 @default.
- W4383896363 cites W2048076161 @default.
- W4383896363 cites W2055503271 @default.
- W4383896363 cites W2065162750 @default.
- W4383896363 cites W2082328103 @default.
- W4383896363 cites W2088255010 @default.
- W4383896363 cites W2088265251 @default.
- W4383896363 cites W2094635587 @default.
- W4383896363 cites W2100986500 @default.
- W4383896363 cites W2113548869 @default.
- W4383896363 cites W2117685245 @default.
- W4383896363 cites W2118234719 @default.
- W4383896363 cites W2121200064 @default.
- W4383896363 cites W2129535614 @default.
- W4383896363 cites W2131171277 @default.
- W4383896363 cites W2148808859 @default.
- W4383896363 cites W2149044936 @default.
- W4383896363 cites W2149155160 @default.
- W4383896363 cites W2160689147 @default.
- W4383896363 cites W2163924214 @default.
- W4383896363 cites W2170856142 @default.
- W4383896363 cites W2191023194 @default.
- W4383896363 cites W2289376408 @default.
- W4383896363 cites W2341396537 @default.
- W4383896363 cites W2513329965 @default.
- W4383896363 cites W2520583019 @default.
- W4383896363 cites W2539221552 @default.
- W4383896363 cites W2756986701 @default.
- W4383896363 cites W2761500606 @default.
- W4383896363 cites W2779800059 @default.
- W4383896363 cites W2785739381 @default.
- W4383896363 cites W2790013227 @default.
- W4383896363 cites W2790066018 @default.
- W4383896363 cites W2892865542 @default.
- W4383896363 cites W2922073769 @default.
- W4383896363 cites W2947588826 @default.
- W4383896363 cites W2993811232 @default.
- W4383896363 cites W3048223331 @default.
- W4383896363 cites W3080150692 @default.
- W4383896363 cites W3091027175 @default.
- W4383896363 cites W3105640967 @default.
- W4383896363 cites W3116472376 @default.
- W4383896363 cites W3121678941 @default.
- W4383896363 cites W3170026236 @default.
- W4383896363 cites W3184050662 @default.
- W4383896363 cites W3216595893 @default.
- W4383896363 cites W379802210 @default.
- W4383896363 cites W4283700853 @default.
- W4383896363 cites W4296357579 @default.
- W4383896363 doi "https://doi.org/10.1080/21664250.2023.2233724" @default.
- W4383896363 hasPublicationYear "2023" @default.
- W4383896363 type Work @default.
- W4383896363 citedByCount "0" @default.
- W4383896363 crossrefType "journal-article" @default.
- W4383896363 hasAuthorship W4383896363A5030272889 @default.
- W4383896363 hasAuthorship W4383896363A5090930412 @default.
- W4383896363 hasBestOaLocation W43838963631 @default.
- W4383896363 hasConcept C119857082 @default.
- W4383896363 hasConcept C154945302 @default.
- W4383896363 hasConcept C177264268 @default.
- W4383896363 hasConcept C19768560 @default.
- W4383896363 hasConcept C199360897 @default.
- W4383896363 hasConcept C202444582 @default.
- W4383896363 hasConcept C33923547 @default.
- W4383896363 hasConcept C41008148 @default.
- W4383896363 hasConcept C50644808 @default.
- W4383896363 hasConcept C9652623 @default.
- W4383896363 hasConceptScore W4383896363C119857082 @default.
- W4383896363 hasConceptScore W4383896363C154945302 @default.
- W4383896363 hasConceptScore W4383896363C177264268 @default.
- W4383896363 hasConceptScore W4383896363C19768560 @default.
- W4383896363 hasConceptScore W4383896363C199360897 @default.
- W4383896363 hasConceptScore W4383896363C202444582 @default.
- W4383896363 hasConceptScore W4383896363C33923547 @default.
- W4383896363 hasConceptScore W4383896363C41008148 @default.
- W4383896363 hasConceptScore W4383896363C50644808 @default.
- W4383896363 hasConceptScore W4383896363C9652623 @default.
- W4383896363 hasFunder F4320314731 @default.
- W4383896363 hasIssue "3" @default.
- W4383896363 hasLocation W43838963631 @default.
- W4383896363 hasOpenAccess W4383896363 @default.