Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383896385> ?p ?o ?g. }
- W4383896385 abstract "Background: Data analysis techniques such as machine learning have been used for assisting in triage and the diagnosis of health problems. Nevertheless, it has not been used yet to assist community pharmacists with services such as the Minor Ailment Services These services have been implemented to reduce the burden of primary care consultations in general medical practitioners (GPs) and to allow a better utilization of community pharmacists’ skills. However, there is a need to refer high-risk patients to GPs. Aim: To develop a predictive model for high-risk patients that need referral assisting community pharmacists’ triage through a minor ailment service. Method: An ongoing pragmatic type 3 effectiveness-implementation hybrid study was undertaken at a national level in Spanish community pharmacies since October 2020. Pharmacists recruited patients presenting with minor ailments and followed them 10 days after the consultation. The main outcome measured was appropriate medical referral (in accordance with previously co-designed protocols). Nine machine learning models were tested (three statistical, three black box and three tree models) to assist pharmacists in the detection of high-risk individuals in need of referral. Results: Over 14′000 patients were included in the study. Most patients were female (68.1%). With no previous treatment for the specific minor ailment (68.0%) presented. A percentage of patients had referral criteria (13.8%) however, not all of these patients were referred by the pharmacist to the GP (8.5%). The pharmacists were using their clinical expertise not to refer these patients. The primary prediction model was the radial support vector machine (RSVM) with an accuracy of 0.934 (CI95 = [0.926,0.942]), Cohen’s kappa of 0.630, recall equal to 0.975 and an area under the curve of 0.897. Twenty variables (out of 61 evaluated) were included in the model. radial support vector machine could predict 95.2% of the true negatives and 74.8% of the true positives. When evaluating the performance for the 25 patient’s profiles most frequent in the study, the model was considered appropriate for 56% of them. Conclusion: A RSVM model was obtained to assist in the differentiation of patients that can be managed in community pharmacy from those who are at risk and should be evaluated by GPs. This tool potentially increases patients’ safety by increasing pharmacists’ ability to differentiate minor ailments from other medical conditions." @default.
- W4383896385 created "2023-07-12" @default.
- W4383896385 creator A5003666469 @default.
- W4383896385 creator A5005028839 @default.
- W4383896385 creator A5015576751 @default.
- W4383896385 creator A5016282893 @default.
- W4383896385 creator A5016521528 @default.
- W4383896385 creator A5024549065 @default.
- W4383896385 creator A5036215633 @default.
- W4383896385 creator A5043202596 @default.
- W4383896385 creator A5043994471 @default.
- W4383896385 creator A5054444195 @default.
- W4383896385 creator A5055345971 @default.
- W4383896385 creator A5068942107 @default.
- W4383896385 creator A5082477026 @default.
- W4383896385 creator A5086496787 @default.
- W4383896385 date "2023-07-11" @default.
- W4383896385 modified "2023-10-18" @default.
- W4383896385 title "Identification of high-risk patients for referral through machine learning assisting the decision making to manage minor ailments in community pharmacies" @default.
- W4383896385 cites W1977098485 @default.
- W4383896385 cites W2020155291 @default.
- W4383896385 cites W2062287064 @default.
- W4383896385 cites W2082137964 @default.
- W4383896385 cites W2099506356 @default.
- W4383896385 cites W2113179902 @default.
- W4383896385 cites W2148143831 @default.
- W4383896385 cites W2155456334 @default.
- W4383896385 cites W2334201740 @default.
- W4383896385 cites W2529017010 @default.
- W4383896385 cites W2730411467 @default.
- W4383896385 cites W2781965824 @default.
- W4383896385 cites W2808173707 @default.
- W4383896385 cites W2955631679 @default.
- W4383896385 cites W2972106780 @default.
- W4383896385 cites W2995197914 @default.
- W4383896385 cites W3009288046 @default.
- W4383896385 cites W3043374725 @default.
- W4383896385 cites W3049421894 @default.
- W4383896385 cites W3095648103 @default.
- W4383896385 cites W3121233242 @default.
- W4383896385 cites W3179712540 @default.
- W4383896385 cites W3194610062 @default.
- W4383896385 cites W4229378776 @default.
- W4383896385 cites W4243072198 @default.
- W4383896385 cites W4244998381 @default.
- W4383896385 cites W4281656136 @default.
- W4383896385 cites W4285404513 @default.
- W4383896385 cites W4293545135 @default.
- W4383896385 cites W429766147 @default.
- W4383896385 cites W4307216191 @default.
- W4383896385 cites W828430974 @default.
- W4383896385 doi "https://doi.org/10.3389/fphar.2023.1105434" @default.
- W4383896385 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37497107" @default.
- W4383896385 hasPublicationYear "2023" @default.
- W4383896385 type Work @default.
- W4383896385 citedByCount "1" @default.
- W4383896385 countsByYear W43838963852023 @default.
- W4383896385 crossrefType "journal-article" @default.
- W4383896385 hasAuthorship W4383896385A5003666469 @default.
- W4383896385 hasAuthorship W4383896385A5005028839 @default.
- W4383896385 hasAuthorship W4383896385A5015576751 @default.
- W4383896385 hasAuthorship W4383896385A5016282893 @default.
- W4383896385 hasAuthorship W4383896385A5016521528 @default.
- W4383896385 hasAuthorship W4383896385A5024549065 @default.
- W4383896385 hasAuthorship W4383896385A5036215633 @default.
- W4383896385 hasAuthorship W4383896385A5043202596 @default.
- W4383896385 hasAuthorship W4383896385A5043994471 @default.
- W4383896385 hasAuthorship W4383896385A5054444195 @default.
- W4383896385 hasAuthorship W4383896385A5055345971 @default.
- W4383896385 hasAuthorship W4383896385A5068942107 @default.
- W4383896385 hasAuthorship W4383896385A5082477026 @default.
- W4383896385 hasAuthorship W4383896385A5086496787 @default.
- W4383896385 hasBestOaLocation W43838963851 @default.
- W4383896385 hasConcept C104863432 @default.
- W4383896385 hasConcept C116834253 @default.
- W4383896385 hasConcept C136264566 @default.
- W4383896385 hasConcept C162324750 @default.
- W4383896385 hasConcept C17744445 @default.
- W4383896385 hasConcept C199539241 @default.
- W4383896385 hasConcept C2776135927 @default.
- W4383896385 hasConcept C2777120189 @default.
- W4383896385 hasConcept C2779457091 @default.
- W4383896385 hasConcept C2779760435 @default.
- W4383896385 hasConcept C2780378061 @default.
- W4383896385 hasConcept C512399662 @default.
- W4383896385 hasConcept C545542383 @default.
- W4383896385 hasConcept C59822182 @default.
- W4383896385 hasConcept C71924100 @default.
- W4383896385 hasConcept C86803240 @default.
- W4383896385 hasConceptScore W4383896385C104863432 @default.
- W4383896385 hasConceptScore W4383896385C116834253 @default.
- W4383896385 hasConceptScore W4383896385C136264566 @default.
- W4383896385 hasConceptScore W4383896385C162324750 @default.
- W4383896385 hasConceptScore W4383896385C17744445 @default.
- W4383896385 hasConceptScore W4383896385C199539241 @default.
- W4383896385 hasConceptScore W4383896385C2776135927 @default.
- W4383896385 hasConceptScore W4383896385C2777120189 @default.
- W4383896385 hasConceptScore W4383896385C2779457091 @default.
- W4383896385 hasConceptScore W4383896385C2779760435 @default.
- W4383896385 hasConceptScore W4383896385C2780378061 @default.