Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383897382> ?p ?o ?g. }
- W4383897382 abstract "Abstract Deciphering the metabolism of microbial species is crucial for understanding their function within complex ecosystems. Genome-scale metabolic models (GSMMs), which predict metabolic traits based on the enzymes encoded in a genome, are promising tools to study microbial ecosystems when genome sequences can be obtained. However, constructing GSMMs for uncultured bacteria is challenging, as metagenome-assembled genomes (MAGs) are typically incomplete, leading to metabolic reconstructions with numerous gaps. Existing methodologies often fill these gaps with the minimum set of reactions necessary to simulate an objective function such as growth. Here we introduce an artificial intelligence-based alternative: the Deep Neural Network Guided Imputation Of Reactomes (DNNGIOR). The DNNGIOR neural network learns weights for missing reactions in incomplete GSMMs from genomes spanning the bacterial domain. We demonstrate that reactions that occur in >30% of the training genomes can be accurately predicted (F1 score = 0.85). The weights generated by the DNNGIOR neural network improved the gap-filling of incomplete GSMMs, when assessed on a large and phylogenetically diverse testing dataset and on a small set of high-quality manually curated models. The accuracy of DNNGIOR was on average 14 times greater than the standard unweighted gap-filling for draft reconstructions and 2-9 times greater for manually curated models. DNNGIOR is available at https://github.com/MGXlab/DNNGIOR or as a pip package ( https://pypi.org/project/dnngior/ )." @default.
- W4383897382 created "2023-07-12" @default.
- W4383897382 creator A5007385808 @default.
- W4383897382 creator A5024245008 @default.
- W4383897382 creator A5032610155 @default.
- W4383897382 creator A5059689937 @default.
- W4383897382 creator A5075961622 @default.
- W4383897382 creator A5084321697 @default.
- W4383897382 date "2023-07-11" @default.
- W4383897382 modified "2023-09-27" @default.
- W4383897382 title "Improving genome-scale metabolic models of incomplete genomes with deep learning" @default.
- W4383897382 cites W1665355332 @default.
- W4383897382 cites W1975927396 @default.
- W4383897382 cites W1984096521 @default.
- W4383897382 cites W2085993965 @default.
- W4383897382 cites W2100084634 @default.
- W4383897382 cites W2108959333 @default.
- W4383897382 cites W2117509624 @default.
- W4383897382 cites W2132092950 @default.
- W4383897382 cites W2150550043 @default.
- W4383897382 cites W2202347610 @default.
- W4383897382 cites W2557679158 @default.
- W4383897382 cites W2559133556 @default.
- W4383897382 cites W2559597060 @default.
- W4383897382 cites W2580505401 @default.
- W4383897382 cites W2611147605 @default.
- W4383897382 cites W2742243248 @default.
- W4383897382 cites W2745006471 @default.
- W4383897382 cites W2764202526 @default.
- W4383897382 cites W2790562319 @default.
- W4383897382 cites W2859249641 @default.
- W4383897382 cites W2910511306 @default.
- W4383897382 cites W2949418748 @default.
- W4383897382 cites W2949676527 @default.
- W4383897382 cites W2950900779 @default.
- W4383897382 cites W2952015518 @default.
- W4383897382 cites W2952096856 @default.
- W4383897382 cites W2952117162 @default.
- W4383897382 cites W2981413553 @default.
- W4383897382 cites W2985371831 @default.
- W4383897382 cites W2995894461 @default.
- W4383897382 cites W3087657942 @default.
- W4383897382 cites W3087744872 @default.
- W4383897382 cites W3095049046 @default.
- W4383897382 cites W3129727011 @default.
- W4383897382 cites W3203631786 @default.
- W4383897382 cites W3206747637 @default.
- W4383897382 cites W3209198863 @default.
- W4383897382 cites W4200380646 @default.
- W4383897382 cites W4206717829 @default.
- W4383897382 cites W4283751098 @default.
- W4383897382 cites W4327616860 @default.
- W4383897382 cites W4362522194 @default.
- W4383897382 doi "https://doi.org/10.1101/2023.07.10.548314" @default.
- W4383897382 hasPublicationYear "2023" @default.
- W4383897382 type Work @default.
- W4383897382 citedByCount "0" @default.
- W4383897382 crossrefType "posted-content" @default.
- W4383897382 hasAuthorship W4383897382A5007385808 @default.
- W4383897382 hasAuthorship W4383897382A5024245008 @default.
- W4383897382 hasAuthorship W4383897382A5032610155 @default.
- W4383897382 hasAuthorship W4383897382A5059689937 @default.
- W4383897382 hasAuthorship W4383897382A5075961622 @default.
- W4383897382 hasAuthorship W4383897382A5084321697 @default.
- W4383897382 hasBestOaLocation W43838973821 @default.
- W4383897382 hasConcept C101810790 @default.
- W4383897382 hasConcept C104317684 @default.
- W4383897382 hasConcept C119857082 @default.
- W4383897382 hasConcept C14036430 @default.
- W4383897382 hasConcept C141231307 @default.
- W4383897382 hasConcept C15151743 @default.
- W4383897382 hasConcept C154945302 @default.
- W4383897382 hasConcept C177264268 @default.
- W4383897382 hasConcept C199360897 @default.
- W4383897382 hasConcept C3742359 @default.
- W4383897382 hasConcept C41008148 @default.
- W4383897382 hasConcept C50644808 @default.
- W4383897382 hasConcept C54355233 @default.
- W4383897382 hasConcept C58041806 @default.
- W4383897382 hasConcept C70721500 @default.
- W4383897382 hasConcept C78458016 @default.
- W4383897382 hasConcept C86803240 @default.
- W4383897382 hasConcept C9357733 @default.
- W4383897382 hasConceptScore W4383897382C101810790 @default.
- W4383897382 hasConceptScore W4383897382C104317684 @default.
- W4383897382 hasConceptScore W4383897382C119857082 @default.
- W4383897382 hasConceptScore W4383897382C14036430 @default.
- W4383897382 hasConceptScore W4383897382C141231307 @default.
- W4383897382 hasConceptScore W4383897382C15151743 @default.
- W4383897382 hasConceptScore W4383897382C154945302 @default.
- W4383897382 hasConceptScore W4383897382C177264268 @default.
- W4383897382 hasConceptScore W4383897382C199360897 @default.
- W4383897382 hasConceptScore W4383897382C3742359 @default.
- W4383897382 hasConceptScore W4383897382C41008148 @default.
- W4383897382 hasConceptScore W4383897382C50644808 @default.
- W4383897382 hasConceptScore W4383897382C54355233 @default.
- W4383897382 hasConceptScore W4383897382C58041806 @default.
- W4383897382 hasConceptScore W4383897382C70721500 @default.
- W4383897382 hasConceptScore W4383897382C78458016 @default.
- W4383897382 hasConceptScore W4383897382C86803240 @default.