Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383899327> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4383899327 endingPage "1" @default.
- W4383899327 startingPage "1" @default.
- W4383899327 abstract "In this work, two approaches of forward design neural network and reverse design neural network were proposed to accelerate the design of passivation-layer structured amorphous indium gallium zinc oxide thin-film transistor (a-IGZO TFT). It was based on a neural network with the back-propagation neural network (BPNN) and general regression neural network (GRNN) as general approximators. The forward design neural network utilized the density-of-states (DOS) key parameters of a-IGZO film as input signals, and could quickly predict characteristic curves with high accuracy. The forward design effectively improved the problem of complex input/output layer parameters in the existing methods, which was significant for the prediction and optimization of a-IGZO TFT device performance. And the reverse design neural network adopts the DOS key parameters of a-IGZO film as the output signal to achieve the rapid prediction of DOS parameters of a-IGZO film. The inverse design effectively compensated the drawback that a-IGZO TFT required artificial tuning of DOS key parameters to achieve characteristic curve fitting. All in all, the neural network model can effectively determine whether the output parameters of the network meet the design objectives and whether the output parameters need to be changed by adjusting the input parameters to eventually achieve the performance prediction and material parameters optimization of a-IGZO TFT." @default.
- W4383899327 created "2023-07-12" @default.
- W4383899327 creator A5012230625 @default.
- W4383899327 creator A5021648774 @default.
- W4383899327 creator A5025300936 @default.
- W4383899327 creator A5040338635 @default.
- W4383899327 creator A5041672115 @default.
- W4383899327 creator A5070179368 @default.
- W4383899327 date "2023-01-01" @default.
- W4383899327 modified "2023-10-16" @default.
- W4383899327 title "Study on Amorphous InGaZnO Thin-Film Transistor Modeling Method Based on Artificial Neural Network" @default.
- W4383899327 doi "https://doi.org/10.1109/jeds.2023.3294439" @default.
- W4383899327 hasPublicationYear "2023" @default.
- W4383899327 type Work @default.
- W4383899327 citedByCount "0" @default.
- W4383899327 crossrefType "journal-article" @default.
- W4383899327 hasAuthorship W4383899327A5012230625 @default.
- W4383899327 hasAuthorship W4383899327A5021648774 @default.
- W4383899327 hasAuthorship W4383899327A5025300936 @default.
- W4383899327 hasAuthorship W4383899327A5040338635 @default.
- W4383899327 hasAuthorship W4383899327A5041672115 @default.
- W4383899327 hasAuthorship W4383899327A5070179368 @default.
- W4383899327 hasBestOaLocation W43838993271 @default.
- W4383899327 hasConcept C119599485 @default.
- W4383899327 hasConcept C127413603 @default.
- W4383899327 hasConcept C154945302 @default.
- W4383899327 hasConcept C155032097 @default.
- W4383899327 hasConcept C165801399 @default.
- W4383899327 hasConcept C171250308 @default.
- W4383899327 hasConcept C172385210 @default.
- W4383899327 hasConcept C175202392 @default.
- W4383899327 hasConcept C192562407 @default.
- W4383899327 hasConcept C24326235 @default.
- W4383899327 hasConcept C26517878 @default.
- W4383899327 hasConcept C2779227376 @default.
- W4383899327 hasConcept C38652104 @default.
- W4383899327 hasConcept C41008148 @default.
- W4383899327 hasConcept C50644808 @default.
- W4383899327 hasConcept C86582703 @default.
- W4383899327 hasConcept C87359718 @default.
- W4383899327 hasConceptScore W4383899327C119599485 @default.
- W4383899327 hasConceptScore W4383899327C127413603 @default.
- W4383899327 hasConceptScore W4383899327C154945302 @default.
- W4383899327 hasConceptScore W4383899327C155032097 @default.
- W4383899327 hasConceptScore W4383899327C165801399 @default.
- W4383899327 hasConceptScore W4383899327C171250308 @default.
- W4383899327 hasConceptScore W4383899327C172385210 @default.
- W4383899327 hasConceptScore W4383899327C175202392 @default.
- W4383899327 hasConceptScore W4383899327C192562407 @default.
- W4383899327 hasConceptScore W4383899327C24326235 @default.
- W4383899327 hasConceptScore W4383899327C26517878 @default.
- W4383899327 hasConceptScore W4383899327C2779227376 @default.
- W4383899327 hasConceptScore W4383899327C38652104 @default.
- W4383899327 hasConceptScore W4383899327C41008148 @default.
- W4383899327 hasConceptScore W4383899327C50644808 @default.
- W4383899327 hasConceptScore W4383899327C86582703 @default.
- W4383899327 hasConceptScore W4383899327C87359718 @default.
- W4383899327 hasFunder F4320321001 @default.
- W4383899327 hasLocation W43838993271 @default.
- W4383899327 hasOpenAccess W4383899327 @default.
- W4383899327 hasPrimaryLocation W43838993271 @default.
- W4383899327 hasRelatedWork W1191567288 @default.
- W4383899327 hasRelatedWork W1346706 @default.
- W4383899327 hasRelatedWork W1941128035 @default.
- W4383899327 hasRelatedWork W2085068378 @default.
- W4383899327 hasRelatedWork W2149173727 @default.
- W4383899327 hasRelatedWork W2354205711 @default.
- W4383899327 hasRelatedWork W2386387936 @default.
- W4383899327 hasRelatedWork W2495019996 @default.
- W4383899327 hasRelatedWork W3107336785 @default.
- W4383899327 hasRelatedWork W2609564064 @default.
- W4383899327 isParatext "false" @default.
- W4383899327 isRetracted "false" @default.
- W4383899327 workType "article" @default.