Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383910995> ?p ?o ?g. }
- W4383910995 abstract "Whole-brain functional connectivity (FC) measured with functional MRI (fMRI) evolves over time in meaningful ways at temporal scales going from years (e.g., development) to seconds [e.g., within-scan time-varying FC (tvFC)]. Yet, our ability to explore tvFC is severely constrained by its large dimensionality (several thousands). To overcome this difficulty, researchers often seek to generate low dimensional representations (e.g., 2D and 3D scatter plots) hoping those will retain important aspects of the data (e.g., relationships to behavior and disease progression). Limited prior empirical work suggests that manifold learning techniques (MLTs)-namely those seeking to infer a low dimensional non-linear surface (i.e., the manifold) where most of the data lies-are good candidates for accomplishing this task. Here we explore this possibility in detail. First, we discuss why one should expect tvFC data to lie on a low dimensional manifold. Second, we estimate what is the intrinsic dimension (ID; i.e., minimum number of latent dimensions) of tvFC data manifolds. Third, we describe the inner workings of three state-of-the-art MLTs: Laplacian Eigenmaps (LEs), T-distributed Stochastic Neighbor Embedding (T-SNE), and Uniform Manifold Approximation and Projection (UMAP). For each method, we empirically evaluate its ability to generate neuro-biologically meaningful representations of tvFC data, as well as their robustness against hyper-parameter selection. Our results show that tvFC data has an ID that ranges between 4 and 26, and that ID varies significantly between rest and task states. We also show how all three methods can effectively capture subject identity and task being performed: UMAP and T-SNE can capture these two levels of detail concurrently, but LE could only capture one at a time. We observed substantial variability in embedding quality across MLTs, and within-MLT as a function of hyper-parameter selection. To help alleviate this issue, we provide heuristics that can inform future studies. Finally, we also demonstrate the importance of feature normalization when combining data across subjects and the role that temporal autocorrelation plays in the application of MLTs to tvFC data. Overall, we conclude that while MLTs can be useful to generate summary views of labeled tvFC data, their application to unlabeled data such as resting-state remains challenging." @default.
- W4383910995 created "2023-07-12" @default.
- W4383910995 creator A5005082781 @default.
- W4383910995 creator A5021767713 @default.
- W4383910995 creator A5036171512 @default.
- W4383910995 creator A5040430392 @default.
- W4383910995 creator A5042793913 @default.
- W4383910995 creator A5052710368 @default.
- W4383910995 date "2023-07-11" @default.
- W4383910995 modified "2023-10-18" @default.
- W4383910995 title "Manifold learning for fMRI time-varying functional connectivity" @default.
- W4383910995 cites W1492553164 @default.
- W4383910995 cites W1672197616 @default.
- W4383910995 cites W1801278145 @default.
- W4383910995 cites W1973192023 @default.
- W4383910995 cites W1976193721 @default.
- W4383910995 cites W1987971958 @default.
- W4383910995 cites W1989577623 @default.
- W4383910995 cites W1991566301 @default.
- W4383910995 cites W1999345164 @default.
- W4383910995 cites W2001141328 @default.
- W4383910995 cites W2002627566 @default.
- W4383910995 cites W2006554089 @default.
- W4383910995 cites W2009494091 @default.
- W4383910995 cites W2015772604 @default.
- W4383910995 cites W2025009638 @default.
- W4383910995 cites W2042970394 @default.
- W4383910995 cites W2044423747 @default.
- W4383910995 cites W2057491655 @default.
- W4383910995 cites W2058187841 @default.
- W4383910995 cites W2061662249 @default.
- W4383910995 cites W2069908974 @default.
- W4383910995 cites W2073690998 @default.
- W4383910995 cites W2075583786 @default.
- W4383910995 cites W2077736018 @default.
- W4383910995 cites W2081015195 @default.
- W4383910995 cites W2097004034 @default.
- W4383910995 cites W2097308346 @default.
- W4383910995 cites W2111902267 @default.
- W4383910995 cites W2117140276 @default.
- W4383910995 cites W2122457251 @default.
- W4383910995 cites W2124757386 @default.
- W4383910995 cites W2125757815 @default.
- W4383910995 cites W2142566135 @default.
- W4383910995 cites W2170567676 @default.
- W4383910995 cites W2170702893 @default.
- W4383910995 cites W2336687820 @default.
- W4383910995 cites W2522628945 @default.
- W4383910995 cites W2536956629 @default.
- W4383910995 cites W2598802110 @default.
- W4383910995 cites W2724344943 @default.
- W4383910995 cites W2744354842 @default.
- W4383910995 cites W2754478492 @default.
- W4383910995 cites W2763508406 @default.
- W4383910995 cites W2772704314 @default.
- W4383910995 cites W2791242539 @default.
- W4383910995 cites W2791304632 @default.
- W4383910995 cites W2792061312 @default.
- W4383910995 cites W2793875056 @default.
- W4383910995 cites W2797507693 @default.
- W4383910995 cites W2921007095 @default.
- W4383910995 cites W2938453170 @default.
- W4383910995 cites W2943522470 @default.
- W4383910995 cites W2949232278 @default.
- W4383910995 cites W2949693884 @default.
- W4383910995 cites W2955712477 @default.
- W4383910995 cites W2963336247 @default.
- W4383910995 cites W2969341258 @default.
- W4383910995 cites W2977886961 @default.
- W4383910995 cites W2987322729 @default.
- W4383910995 cites W2989747508 @default.
- W4383910995 cites W2990278662 @default.
- W4383910995 cites W2999938474 @default.
- W4383910995 cites W3035968464 @default.
- W4383910995 cites W3091722552 @default.
- W4383910995 cites W3092764476 @default.
- W4383910995 cites W3097418761 @default.
- W4383910995 cites W3131976613 @default.
- W4383910995 cites W3136394686 @default.
- W4383910995 cites W3157146043 @default.
- W4383910995 cites W3164032838 @default.
- W4383910995 cites W3176741613 @default.
- W4383910995 cites W3185054068 @default.
- W4383910995 cites W3202868818 @default.
- W4383910995 cites W3206571981 @default.
- W4383910995 cites W4200029085 @default.
- W4383910995 cites W4220719487 @default.
- W4383910995 cites W4225941099 @default.
- W4383910995 cites W4226045995 @default.
- W4383910995 cites W4229013045 @default.
- W4383910995 cites W4255692800 @default.
- W4383910995 cites W4300410929 @default.
- W4383910995 cites W4306249881 @default.
- W4383910995 cites W4306643150 @default.
- W4383910995 cites W4360999013 @default.
- W4383910995 doi "https://doi.org/10.3389/fnhum.2023.1134012" @default.
- W4383910995 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37497043" @default.
- W4383910995 hasPublicationYear "2023" @default.
- W4383910995 type Work @default.
- W4383910995 citedByCount "0" @default.