Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383959095> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4383959095 endingPage "173" @default.
- W4383959095 startingPage "163" @default.
- W4383959095 abstract "The telecommunication company functioned in the market with extremely high competitiveness. Attracting new customers needs 5-10 times more expenses than maintaining an existing one. As a result, effective customer churn management and analysis of the reasons for customer churn are vital tasks for telecommunication operators. As a result, predicting subscriber churn by switching on the competitors becomes very important. Data Science and machine learning create enormous opportunities for solving this task to evaluate customer satisfaction with company services, determine factors that cause disappointment, and forecast which clients are at a greater risk of abandoning and changing services suppliers. A company that implements data analysis and modelling to develop customer churn prediction models has an opportunity to improve customer churn management and increase business results. The purposes of the research are the application of machine learning models for a telecommunications company, in particular, the construction of models for predicting the user churn rate and proving that Data Science models and machine learning are high-quality and effective tools for solving the tasks of forecasting the key marketing metrics of a telecommunications company. Based on the example of Telco, the article contains the results of the implementation of various models for classification, such as logistic regression, Random Forest, SVM, and XGBoost, using Python programming language. All models are characterised by high quality (the general accuracy is over 80%). So, the paper demonstrates the feasibility and possibility of implementing the model to classify customers in the future to anticipate subscriber churn (clients who may abandon the company’s services) and minimise consumer outflow based on this. The main factors influencing customer churn are established, which is basic information for further forecasting client outflow. Customer outflow prediction models implementation will help to reduce customer churn and maintain their loyalty. The research results can be useful for optimising marketing activity of managing the outflow of consumers of companies on the telecommunication market by developing effective decisions based on data and improving the mathematical methodology of forecasting the outflow of consumers. Therefore, the study’s main theoretical and practical achievements are to develop an efficient forecasting tool for enterprises to control outflow risks and to enrich the research on data analysis and Data Science methodology to identify essential factors that determine the propensity of customers to churn." @default.
- W4383959095 created "2023-07-12" @default.
- W4383959095 creator A5015363911 @default.
- W4383959095 creator A5020740503 @default.
- W4383959095 creator A5047735821 @default.
- W4383959095 date "2023-01-01" @default.
- W4383959095 modified "2023-09-23" @default.
- W4383959095 title "Churn Rate Modeling for Telecommunication Operators Using Data Science Methods" @default.
- W4383959095 cites W1573688380 @default.
- W4383959095 cites W2767114953 @default.
- W4383959095 cites W2901435810 @default.
- W4383959095 cites W2953766798 @default.
- W4383959095 cites W2997170830 @default.
- W4383959095 cites W3002658011 @default.
- W4383959095 cites W3045708036 @default.
- W4383959095 cites W3119177172 @default.
- W4383959095 cites W3120066074 @default.
- W4383959095 cites W3196001989 @default.
- W4383959095 cites W3198767241 @default.
- W4383959095 cites W3208801535 @default.
- W4383959095 cites W3210710818 @default.
- W4383959095 cites W3214892892 @default.
- W4383959095 cites W3215732293 @default.
- W4383959095 cites W4200522273 @default.
- W4383959095 cites W4207035874 @default.
- W4383959095 cites W4247737083 @default.
- W4383959095 cites W4312563020 @default.
- W4383959095 doi "https://doi.org/10.21272/mmi.2023.2-15" @default.
- W4383959095 hasPublicationYear "2023" @default.
- W4383959095 type Work @default.
- W4383959095 citedByCount "0" @default.
- W4383959095 crossrefType "journal-article" @default.
- W4383959095 hasAuthorship W4383959095A5015363911 @default.
- W4383959095 hasAuthorship W4383959095A5020740503 @default.
- W4383959095 hasAuthorship W4383959095A5047735821 @default.
- W4383959095 hasBestOaLocation W43839590951 @default.
- W4383959095 hasConcept C111472728 @default.
- W4383959095 hasConcept C111919701 @default.
- W4383959095 hasConcept C119857082 @default.
- W4383959095 hasConcept C127576917 @default.
- W4383959095 hasConcept C138885662 @default.
- W4383959095 hasConcept C144133560 @default.
- W4383959095 hasConcept C162853370 @default.
- W4383959095 hasConcept C169258074 @default.
- W4383959095 hasConcept C2522767166 @default.
- W4383959095 hasConcept C2779530757 @default.
- W4383959095 hasConcept C33271190 @default.
- W4383959095 hasConcept C41008148 @default.
- W4383959095 hasConcept C519991488 @default.
- W4383959095 hasConcept C76155785 @default.
- W4383959095 hasConceptScore W4383959095C111472728 @default.
- W4383959095 hasConceptScore W4383959095C111919701 @default.
- W4383959095 hasConceptScore W4383959095C119857082 @default.
- W4383959095 hasConceptScore W4383959095C127576917 @default.
- W4383959095 hasConceptScore W4383959095C138885662 @default.
- W4383959095 hasConceptScore W4383959095C144133560 @default.
- W4383959095 hasConceptScore W4383959095C162853370 @default.
- W4383959095 hasConceptScore W4383959095C169258074 @default.
- W4383959095 hasConceptScore W4383959095C2522767166 @default.
- W4383959095 hasConceptScore W4383959095C2779530757 @default.
- W4383959095 hasConceptScore W4383959095C33271190 @default.
- W4383959095 hasConceptScore W4383959095C41008148 @default.
- W4383959095 hasConceptScore W4383959095C519991488 @default.
- W4383959095 hasConceptScore W4383959095C76155785 @default.
- W4383959095 hasIssue "2" @default.
- W4383959095 hasLocation W43839590951 @default.
- W4383959095 hasLocation W43839590952 @default.
- W4383959095 hasOpenAccess W4383959095 @default.
- W4383959095 hasPrimaryLocation W43839590951 @default.
- W4383959095 hasRelatedWork W1974727714 @default.
- W4383959095 hasRelatedWork W2050853722 @default.
- W4383959095 hasRelatedWork W2327204559 @default.
- W4383959095 hasRelatedWork W2504654935 @default.
- W4383959095 hasRelatedWork W2587671147 @default.
- W4383959095 hasRelatedWork W2623240261 @default.
- W4383959095 hasRelatedWork W2902041672 @default.
- W4383959095 hasRelatedWork W3129254793 @default.
- W4383959095 hasRelatedWork W4285225238 @default.
- W4383959095 hasRelatedWork W2804431532 @default.
- W4383959095 hasVolume "14" @default.
- W4383959095 isParatext "false" @default.
- W4383959095 isRetracted "false" @default.
- W4383959095 workType "article" @default.