Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383959314> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4383959314 endingPage "441" @default.
- W4383959314 startingPage "428" @default.
- W4383959314 abstract "For the optimization process to start, traditional statistical methods for nonlinear regression models need a starting point (initial parameters or guess values). The parameters must first be predicted using an iterative process after the nonlinear regression model expression has been written, the parameter names have been expressed, and the initial parameter values have been defined. The Gauss-Newton and Levenberg-Marquardt methods (algorithms) for solving non-linear regression models were used in a computer program for predicting three growth models (Logistic, Gompertz, and Weibull models). The multiplicative error terms used to decompose the growth models help specify the best algorithm and model for growth studies. Before using an iterative approach, second-order regression techniques were used to solve the problem of the initial parameters. The final estimate of the parameters, standard errors, p-values, and model adequacy metrics like (R 2 , Adj. R 2 , MSE, SSE, AIC, and BIC) that were used to select the best algorithm and growth model are displayed in the result. The Weibull Growth Model with Multiplicative Error Terms was determined to be the ideal growth model by this study. The Gauss-Newton Algorithm was once again found to be the best algorithm for solving nonlinear regression models in this study. Finally, this study suggest/recommend using the Gauss-Newton algorithm to solve non-linear regression models and the Weibull Growth Model for additional growth studies." @default.
- W4383959314 created "2023-07-12" @default.
- W4383959314 creator A5071123598 @default.
- W4383959314 creator A5092534856 @default.
- W4383959314 creator A5092534857 @default.
- W4383959314 date "2023-07-03" @default.
- W4383959314 modified "2023-10-14" @default.
- W4383959314 title "Non-Linear Regression Algorithms for Selected Growth Models" @default.
- W4383959314 cites W2795662761 @default.
- W4383959314 doi "https://doi.org/10.15864/jmscm.4403" @default.
- W4383959314 hasPublicationYear "2023" @default.
- W4383959314 type Work @default.
- W4383959314 citedByCount "0" @default.
- W4383959314 crossrefType "journal-article" @default.
- W4383959314 hasAuthorship W4383959314A5071123598 @default.
- W4383959314 hasAuthorship W4383959314A5092534856 @default.
- W4383959314 hasAuthorship W4383959314A5092534857 @default.
- W4383959314 hasBestOaLocation W43839593141 @default.
- W4383959314 hasConcept C105795698 @default.
- W4383959314 hasConcept C11413529 @default.
- W4383959314 hasConcept C120068334 @default.
- W4383959314 hasConcept C126255220 @default.
- W4383959314 hasConcept C134306372 @default.
- W4383959314 hasConcept C134463574 @default.
- W4383959314 hasConcept C152877465 @default.
- W4383959314 hasConcept C163175372 @default.
- W4383959314 hasConcept C173291955 @default.
- W4383959314 hasConcept C28826006 @default.
- W4383959314 hasConcept C32224588 @default.
- W4383959314 hasConcept C33923547 @default.
- W4383959314 hasConcept C42747912 @default.
- W4383959314 hasConcept C46889948 @default.
- W4383959314 hasConcept C48921125 @default.
- W4383959314 hasConceptScore W4383959314C105795698 @default.
- W4383959314 hasConceptScore W4383959314C11413529 @default.
- W4383959314 hasConceptScore W4383959314C120068334 @default.
- W4383959314 hasConceptScore W4383959314C126255220 @default.
- W4383959314 hasConceptScore W4383959314C134306372 @default.
- W4383959314 hasConceptScore W4383959314C134463574 @default.
- W4383959314 hasConceptScore W4383959314C152877465 @default.
- W4383959314 hasConceptScore W4383959314C163175372 @default.
- W4383959314 hasConceptScore W4383959314C173291955 @default.
- W4383959314 hasConceptScore W4383959314C28826006 @default.
- W4383959314 hasConceptScore W4383959314C32224588 @default.
- W4383959314 hasConceptScore W4383959314C33923547 @default.
- W4383959314 hasConceptScore W4383959314C42747912 @default.
- W4383959314 hasConceptScore W4383959314C46889948 @default.
- W4383959314 hasConceptScore W4383959314C48921125 @default.
- W4383959314 hasIssue "4" @default.
- W4383959314 hasLocation W43839593141 @default.
- W4383959314 hasOpenAccess W4383959314 @default.
- W4383959314 hasPrimaryLocation W43839593141 @default.
- W4383959314 hasRelatedWork W1769516736 @default.
- W4383959314 hasRelatedWork W2124354819 @default.
- W4383959314 hasRelatedWork W2439899683 @default.
- W4383959314 hasRelatedWork W2886532972 @default.
- W4383959314 hasRelatedWork W2918472618 @default.
- W4383959314 hasRelatedWork W3021785231 @default.
- W4383959314 hasRelatedWork W3118299338 @default.
- W4383959314 hasRelatedWork W3133886840 @default.
- W4383959314 hasRelatedWork W4242576060 @default.
- W4383959314 hasRelatedWork W641278561 @default.
- W4383959314 hasVolume "4" @default.
- W4383959314 isParatext "false" @default.
- W4383959314 isRetracted "false" @default.
- W4383959314 workType "article" @default.