Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383960197> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W4383960197 endingPage "228" @default.
- W4383960197 startingPage "224" @default.
- W4383960197 abstract "Für die Nutzung von Deep Learning zur Unterstützung der Prozesse innerhalb der Arbeitsplanung wird eine Vielzahl von Daten benötigt. In der industriellen Praxis ist die Aufbereitung solcher Datensätze sehr komplex und mit hohen Aufwand verbunden. Durch die Nutzung von Deep Transfer Learning kann die benötigte Datenmenge reduziert werden. Am Beispiel der Fertigungsvorgangsermittlung wird ein Konzept vorgestellt, das die Anwendung von Deep Transfer Learning innerhalb der Arbeitsplanung ermöglicht. A large amount of data is required for the use of deep learning to support process planning. In industrial practice, the preparation of such data sets is very complex and requires a lot of manual effort. By using deep transfer learning, the required amount of data can be reduced. Therefore, using the example of manufacturing operation selection, a concept is introduced that enables the application of deep transfer learning within process planning." @default.
- W4383960197 created "2023-07-12" @default.
- W4383960197 creator A5009094497 @default.
- W4383960197 creator A5015749798 @default.
- W4383960197 creator A5086745125 @default.
- W4383960197 date "2023-01-01" @default.
- W4383960197 modified "2023-09-28" @default.
- W4383960197 title "Deep Transfer Learning in der Arbeitsplanung/Deep transfer learning in process planning – A concept for applying deep transfer learning in process planning using the example of manufacturing operations selection" @default.
- W4383960197 doi "https://doi.org/10.37544/1436-4980-2023-06-16" @default.
- W4383960197 hasPublicationYear "2023" @default.
- W4383960197 type Work @default.
- W4383960197 citedByCount "0" @default.
- W4383960197 crossrefType "journal-article" @default.
- W4383960197 hasAuthorship W4383960197A5009094497 @default.
- W4383960197 hasAuthorship W4383960197A5015749798 @default.
- W4383960197 hasAuthorship W4383960197A5086745125 @default.
- W4383960197 hasBestOaLocation W43839601971 @default.
- W4383960197 hasConcept C108583219 @default.
- W4383960197 hasConcept C111919701 @default.
- W4383960197 hasConcept C150899416 @default.
- W4383960197 hasConcept C154945302 @default.
- W4383960197 hasConcept C41008148 @default.
- W4383960197 hasConcept C81917197 @default.
- W4383960197 hasConcept C98045186 @default.
- W4383960197 hasConceptScore W4383960197C108583219 @default.
- W4383960197 hasConceptScore W4383960197C111919701 @default.
- W4383960197 hasConceptScore W4383960197C150899416 @default.
- W4383960197 hasConceptScore W4383960197C154945302 @default.
- W4383960197 hasConceptScore W4383960197C41008148 @default.
- W4383960197 hasConceptScore W4383960197C81917197 @default.
- W4383960197 hasConceptScore W4383960197C98045186 @default.
- W4383960197 hasIssue "06" @default.
- W4383960197 hasLocation W43839601971 @default.
- W4383960197 hasOpenAccess W4383960197 @default.
- W4383960197 hasPrimaryLocation W43839601971 @default.
- W4383960197 hasRelatedWork W2889705046 @default.
- W4383960197 hasRelatedWork W2949280030 @default.
- W4383960197 hasRelatedWork W2953350812 @default.
- W4383960197 hasRelatedWork W2997709384 @default.
- W4383960197 hasRelatedWork W3018421652 @default.
- W4383960197 hasRelatedWork W3091976719 @default.
- W4383960197 hasRelatedWork W3189091156 @default.
- W4383960197 hasRelatedWork W3192840557 @default.
- W4383960197 hasRelatedWork W4200442073 @default.
- W4383960197 hasRelatedWork W4213299466 @default.
- W4383960197 hasVolume "113" @default.
- W4383960197 isParatext "false" @default.
- W4383960197 isRetracted "false" @default.
- W4383960197 workType "article" @default.