Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384010905> ?p ?o ?g. }
- W4384010905 endingPage "109601" @default.
- W4384010905 startingPage "109601" @default.
- W4384010905 abstract "Trends in crop phenometrics reveal the influence of climate variability and change on crop growth and development. However, the trends are less clear in fragmented tropical smallholder landscapes, because there is high spatial and temporal variability in crop phenology. Frequent historical and high spatial resolution (≤30 m) Earth observations are needed to track changes in crop phenology in fragmented landscapes but are often unavailable. The spatial–temporal gap can be closed by integrating infrequent high spatial resolution Earth observations with low spatial/high temporal resolution observations through data fusion. We fused 30 m resolution Landsat and 250 m resolution MODIS imagery to investigate trends in crop phenology from 2000 to 2020 in a fragmented agricultural landscape of Ethiopia. We used the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) that had recently been modified for application in fragmented agricultural landscapes. We used the non-parametric Mann–Kendall test for crop phenology trend analysis. Crop phenology based on Landsat–MODIS fusion was compared to MODIS-based crop phenology without fusion. We found data fusion yielded a smaller magnitude of changes in the start of season (SOS: -0.2-day-y−1) and end of season (EOS: -0.50-day-y−1) compared to MODIS SOS (-0.5-day-y−1) and EOS (1.38-day-y−1) due to MODIS-related mixing with the surrounding natural vegetation in the fragmented agricultural landscape. EOS showed a faster rate of change compared to SOS over the 21-years. The Landsat and MODIS fusion captured spatial variation in the timing and magnitude of change specific to crops and their growing environment, which has implications for adaptation strategies. Our results highlight the importance of long-term data fusion to improve the spatial dimension of crop phenology time series analysis. Integrating time series land cover maps into the data fusion processing chain could further improve long-term data fusion for crop phenology trend analysis." @default.
- W4384010905 created "2023-07-13" @default.
- W4384010905 creator A5026575556 @default.
- W4384010905 creator A5053893403 @default.
- W4384010905 creator A5056154030 @default.
- W4384010905 creator A5082336078 @default.
- W4384010905 date "2023-09-01" @default.
- W4384010905 modified "2023-10-16" @default.
- W4384010905 title "Detecting the long-term spatiotemporal crop phenology changes in a highly fragmented agricultural landscape" @default.
- W4384010905 cites W1828739328 @default.
- W4384010905 cites W1972078955 @default.
- W4384010905 cites W1984289242 @default.
- W4384010905 cites W2022270279 @default.
- W4384010905 cites W2023358005 @default.
- W4384010905 cites W2036820254 @default.
- W4384010905 cites W2044615381 @default.
- W4384010905 cites W2051107345 @default.
- W4384010905 cites W2056811372 @default.
- W4384010905 cites W2060423608 @default.
- W4384010905 cites W2077578806 @default.
- W4384010905 cites W2078100709 @default.
- W4384010905 cites W2086362850 @default.
- W4384010905 cites W2091597654 @default.
- W4384010905 cites W2091897928 @default.
- W4384010905 cites W2092234278 @default.
- W4384010905 cites W2094677081 @default.
- W4384010905 cites W2115241128 @default.
- W4384010905 cites W2165977484 @default.
- W4384010905 cites W2171504899 @default.
- W4384010905 cites W2234018419 @default.
- W4384010905 cites W2408286848 @default.
- W4384010905 cites W2522055505 @default.
- W4384010905 cites W2551241754 @default.
- W4384010905 cites W2552805558 @default.
- W4384010905 cites W2574207111 @default.
- W4384010905 cites W2618953255 @default.
- W4384010905 cites W2728051320 @default.
- W4384010905 cites W2753853495 @default.
- W4384010905 cites W2770197114 @default.
- W4384010905 cites W2778758461 @default.
- W4384010905 cites W2792164721 @default.
- W4384010905 cites W2804650773 @default.
- W4384010905 cites W2923550597 @default.
- W4384010905 cites W3003839499 @default.
- W4384010905 cites W3004741759 @default.
- W4384010905 cites W3096477768 @default.
- W4384010905 cites W3135537373 @default.
- W4384010905 cites W3161713184 @default.
- W4384010905 cites W3092060728 @default.
- W4384010905 doi "https://doi.org/10.1016/j.agrformet.2023.109601" @default.
- W4384010905 hasPublicationYear "2023" @default.
- W4384010905 type Work @default.
- W4384010905 citedByCount "0" @default.
- W4384010905 crossrefType "journal-article" @default.
- W4384010905 hasAuthorship W4384010905A5026575556 @default.
- W4384010905 hasAuthorship W4384010905A5053893403 @default.
- W4384010905 hasAuthorship W4384010905A5056154030 @default.
- W4384010905 hasAuthorship W4384010905A5082336078 @default.
- W4384010905 hasBestOaLocation W43840109051 @default.
- W4384010905 hasConcept C100970517 @default.
- W4384010905 hasConcept C105795698 @default.
- W4384010905 hasConcept C132651083 @default.
- W4384010905 hasConcept C137580998 @default.
- W4384010905 hasConcept C137660486 @default.
- W4384010905 hasConcept C142724271 @default.
- W4384010905 hasConcept C158709400 @default.
- W4384010905 hasConcept C18903297 @default.
- W4384010905 hasConcept C205649164 @default.
- W4384010905 hasConcept C2776133958 @default.
- W4384010905 hasConcept C33923547 @default.
- W4384010905 hasConcept C39432304 @default.
- W4384010905 hasConcept C51417038 @default.
- W4384010905 hasConcept C71924100 @default.
- W4384010905 hasConcept C86803240 @default.
- W4384010905 hasConcept C94747663 @default.
- W4384010905 hasConcept C97137747 @default.
- W4384010905 hasConceptScore W4384010905C100970517 @default.
- W4384010905 hasConceptScore W4384010905C105795698 @default.
- W4384010905 hasConceptScore W4384010905C132651083 @default.
- W4384010905 hasConceptScore W4384010905C137580998 @default.
- W4384010905 hasConceptScore W4384010905C137660486 @default.
- W4384010905 hasConceptScore W4384010905C142724271 @default.
- W4384010905 hasConceptScore W4384010905C158709400 @default.
- W4384010905 hasConceptScore W4384010905C18903297 @default.
- W4384010905 hasConceptScore W4384010905C205649164 @default.
- W4384010905 hasConceptScore W4384010905C2776133958 @default.
- W4384010905 hasConceptScore W4384010905C33923547 @default.
- W4384010905 hasConceptScore W4384010905C39432304 @default.
- W4384010905 hasConceptScore W4384010905C51417038 @default.
- W4384010905 hasConceptScore W4384010905C71924100 @default.
- W4384010905 hasConceptScore W4384010905C86803240 @default.
- W4384010905 hasConceptScore W4384010905C94747663 @default.
- W4384010905 hasConceptScore W4384010905C97137747 @default.
- W4384010905 hasLocation W43840109051 @default.
- W4384010905 hasOpenAccess W4384010905 @default.
- W4384010905 hasPrimaryLocation W43840109051 @default.
- W4384010905 hasRelatedWork W1979566147 @default.
- W4384010905 hasRelatedWork W2082252128 @default.