Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384024762> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W4384024762 endingPage "293" @default.
- W4384024762 startingPage "264" @default.
- W4384024762 abstract "To investigate the degree <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=d> <mml:semantics> <mml:mi>d</mml:mi> <mml:annotation encoding=application/x-tex>d</mml:annotation> </mml:semantics> </mml:math> </inline-formula> connectedness locus, Thurston [<italic>On the geometry and dynamics of iterated rational maps</italic>, Complex Dynamics, A K Peters, Wellesley, MA, 2009, pp. 3–137] studied <italic><inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sigma Subscript d> <mml:semantics> <mml:msub> <mml:mi>σ<!-- σ --></mml:mi> <mml:mi>d</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>sigma _d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-invariant laminations</italic>, where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sigma Subscript d> <mml:semantics> <mml:msub> <mml:mi>σ<!-- σ --></mml:mi> <mml:mi>d</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>sigma _d</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=d> <mml:semantics> <mml:mi>d</mml:mi> <mml:annotation encoding=application/x-tex>d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-tupling map on the unit circle, and built a topological model for the space of quadratic polynomials <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f left-parenthesis z right-parenthesis equals z squared plus c> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>z</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>+</mml:mo> <mml:mi>c</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>f(z) = z^2 +c</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In the spirit of Thurston’s work, we consider the space of all <italic>cubic symmetric polynomials</italic> <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f Subscript lamda Baseline left-parenthesis z right-parenthesis equals z cubed plus lamda squared z> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>λ<!-- λ --></mml:mi> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>z</mml:mi> <mml:mn>3</mml:mn> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>λ<!-- λ --></mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mi>z</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>f_lambda (z)=z^3+lambda ^2 z</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in a series of three articles. In the present paper, the first in the series, we construct a lamination <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper C Subscript s Baseline upper C upper L> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>C</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:mi>C</mml:mi> <mml:mi>L</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>C_sCL</mml:annotation> </mml:semantics> </mml:math> </inline-formula> together with the induced factor space <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper S slash upper C Subscript s Baseline upper C upper L> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>S</mml:mi> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:msub> <mml:mi>C</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:mi>C</mml:mi> <mml:mi>L</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {S}/C_sCL</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the unit circle <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper S> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>S</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {S}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As will be verified in the third paper of the series, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper S slash upper C Subscript s Baseline upper C upper L> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>S</mml:mi> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:msub> <mml:mi>C</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:mi>C</mml:mi> <mml:mi>L</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {S}/C_sCL</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a monotone model of the <italic>cubic symmetric connectedness locus</italic>, i.e. the space of all cubic symmetric polynomials with connected Julia sets." @default.
- W4384024762 created "2023-07-13" @default.
- W4384024762 creator A5005602089 @default.
- W4384024762 creator A5009711031 @default.
- W4384024762 creator A5021243814 @default.
- W4384024762 creator A5023408714 @default.
- W4384024762 creator A5026583152 @default.
- W4384024762 date "2023-07-12" @default.
- W4384024762 modified "2023-10-14" @default.
- W4384024762 title "Symmetric cubic laminations" @default.
- W4384024762 cites W113908933 @default.
- W4384024762 cites W1525241881 @default.
- W4384024762 cites W1857054841 @default.
- W4384024762 cites W1978487894 @default.
- W4384024762 cites W2529820895 @default.
- W4384024762 cites W2963252780 @default.
- W4384024762 cites W4243040750 @default.
- W4384024762 doi "https://doi.org/10.1090/ecgd/385" @default.
- W4384024762 hasPublicationYear "2023" @default.
- W4384024762 type Work @default.
- W4384024762 citedByCount "0" @default.
- W4384024762 crossrefType "journal-article" @default.
- W4384024762 hasAuthorship W4384024762A5005602089 @default.
- W4384024762 hasAuthorship W4384024762A5009711031 @default.
- W4384024762 hasAuthorship W4384024762A5021243814 @default.
- W4384024762 hasAuthorship W4384024762A5023408714 @default.
- W4384024762 hasAuthorship W4384024762A5026583152 @default.
- W4384024762 hasBestOaLocation W43840247621 @default.
- W4384024762 hasConcept C11413529 @default.
- W4384024762 hasConcept C154945302 @default.
- W4384024762 hasConcept C2776321320 @default.
- W4384024762 hasConcept C41008148 @default.
- W4384024762 hasConceptScore W4384024762C11413529 @default.
- W4384024762 hasConceptScore W4384024762C154945302 @default.
- W4384024762 hasConceptScore W4384024762C2776321320 @default.
- W4384024762 hasConceptScore W4384024762C41008148 @default.
- W4384024762 hasFunder F4320306076 @default.
- W4384024762 hasIssue "7" @default.
- W4384024762 hasLocation W43840247621 @default.
- W4384024762 hasLocation W43840247622 @default.
- W4384024762 hasOpenAccess W4384024762 @default.
- W4384024762 hasPrimaryLocation W43840247621 @default.
- W4384024762 hasRelatedWork W1529400504 @default.
- W4384024762 hasRelatedWork W1892467659 @default.
- W4384024762 hasRelatedWork W2143954309 @default.
- W4384024762 hasRelatedWork W2333703843 @default.
- W4384024762 hasRelatedWork W2334690443 @default.
- W4384024762 hasRelatedWork W2386767533 @default.
- W4384024762 hasRelatedWork W2394022102 @default.
- W4384024762 hasRelatedWork W2469937864 @default.
- W4384024762 hasRelatedWork W2808586768 @default.
- W4384024762 hasRelatedWork W2998403542 @default.
- W4384024762 hasVolume "27" @default.
- W4384024762 isParatext "false" @default.
- W4384024762 isRetracted "false" @default.
- W4384024762 workType "article" @default.