Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384028546> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4384028546 endingPage "12" @default.
- W4384028546 startingPage "1" @default.
- W4384028546 abstract "Quantum computing has been revolutionizing the development of algorithms. However, only noisy intermediate-scale quantum devices are available currently, which imposes several restrictions on the circuit implementation of quantum algorithms. In this article, we propose a framework that builds quantum neurons based on kernel machines, where the quantum neurons differ from each other by their feature space mappings. Besides contemplating previous quantum neurons, our generalized framework has the capacity to instantiate other feature mappings that allow us to solve real problems better. Under that framework, we present a neuron that applies a tensor-product feature mapping to an exponentially larger space. The proposed neuron is implemented by a circuit of constant depth with a linear number of elementary single-qubit gates. The previous quantum neuron applies a phase-based feature mapping with an exponentially expensive circuit implementation, even using multiqubit gates. Additionally, the proposed neuron has parameters that can change its activation function shape. Here, we show the activation function shape of each quantum neuron. It turns out that parametrization allows the proposed neuron to optimally fit underlying patterns that the existing neuron cannot fit, as demonstrated in the nonlinear toy classification problems addressed here. The feasibility of those quantum neuron solutions is also contemplated in the demonstration through executions on a quantum simulator. Finally, we compare those kernel-based quantum neurons in the problem of handwritten digit recognition, where the performances of quantum neurons that implement classical activation functions are also contrasted here. The repeated evidence of the parametrization potential achieved in real-life problems allows concluding that this work provides a quantum neuron with improved discriminative abilities. As a consequence, the generalized framework of quantum neurons can contribute toward practical quantum advantage." @default.
- W4384028546 created "2023-07-13" @default.
- W4384028546 creator A5017892343 @default.
- W4384028546 creator A5086585741 @default.
- W4384028546 date "2023-01-01" @default.
- W4384028546 modified "2023-10-14" @default.
- W4384028546 title "Parametrized Constant-Depth Quantum Neuron" @default.
- W4384028546 doi "https://doi.org/10.1109/tnnls.2023.3290535" @default.
- W4384028546 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37436857" @default.
- W4384028546 hasPublicationYear "2023" @default.
- W4384028546 type Work @default.
- W4384028546 citedByCount "0" @default.
- W4384028546 crossrefType "journal-article" @default.
- W4384028546 hasAuthorship W4384028546A5017892343 @default.
- W4384028546 hasAuthorship W4384028546A5086585741 @default.
- W4384028546 hasConcept C11413529 @default.
- W4384028546 hasConcept C114614502 @default.
- W4384028546 hasConcept C121332964 @default.
- W4384028546 hasConcept C124148022 @default.
- W4384028546 hasConcept C137019171 @default.
- W4384028546 hasConcept C138885662 @default.
- W4384028546 hasConcept C184720557 @default.
- W4384028546 hasConcept C203087015 @default.
- W4384028546 hasConcept C2776401178 @default.
- W4384028546 hasConcept C33923547 @default.
- W4384028546 hasConcept C41008148 @default.
- W4384028546 hasConcept C41895202 @default.
- W4384028546 hasConcept C51003876 @default.
- W4384028546 hasConcept C58053490 @default.
- W4384028546 hasConcept C58849907 @default.
- W4384028546 hasConcept C62520636 @default.
- W4384028546 hasConcept C84114770 @default.
- W4384028546 hasConceptScore W4384028546C11413529 @default.
- W4384028546 hasConceptScore W4384028546C114614502 @default.
- W4384028546 hasConceptScore W4384028546C121332964 @default.
- W4384028546 hasConceptScore W4384028546C124148022 @default.
- W4384028546 hasConceptScore W4384028546C137019171 @default.
- W4384028546 hasConceptScore W4384028546C138885662 @default.
- W4384028546 hasConceptScore W4384028546C184720557 @default.
- W4384028546 hasConceptScore W4384028546C203087015 @default.
- W4384028546 hasConceptScore W4384028546C2776401178 @default.
- W4384028546 hasConceptScore W4384028546C33923547 @default.
- W4384028546 hasConceptScore W4384028546C41008148 @default.
- W4384028546 hasConceptScore W4384028546C41895202 @default.
- W4384028546 hasConceptScore W4384028546C51003876 @default.
- W4384028546 hasConceptScore W4384028546C58053490 @default.
- W4384028546 hasConceptScore W4384028546C58849907 @default.
- W4384028546 hasConceptScore W4384028546C62520636 @default.
- W4384028546 hasConceptScore W4384028546C84114770 @default.
- W4384028546 hasFunder F4320323678 @default.
- W4384028546 hasLocation W43840285461 @default.
- W4384028546 hasLocation W43840285462 @default.
- W4384028546 hasOpenAccess W4384028546 @default.
- W4384028546 hasPrimaryLocation W43840285461 @default.
- W4384028546 hasRelatedWork W1975824633 @default.
- W4384028546 hasRelatedWork W2953212336 @default.
- W4384028546 hasRelatedWork W3006610287 @default.
- W4384028546 hasRelatedWork W3096747752 @default.
- W4384028546 hasRelatedWork W3171901910 @default.
- W4384028546 hasRelatedWork W3194905711 @default.
- W4384028546 hasRelatedWork W3206120658 @default.
- W4384028546 hasRelatedWork W4309470286 @default.
- W4384028546 hasRelatedWork W4318620911 @default.
- W4384028546 hasRelatedWork W4379115997 @default.
- W4384028546 isParatext "false" @default.
- W4384028546 isRetracted "false" @default.
- W4384028546 workType "article" @default.