Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384029023> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4384029023 abstract "<sec> <title>BACKGROUND</title> Artificial Intelligence (AI) can revolutionize healthcare but raises risk concerns. It is therefore crucial to understand how clinicians trust and accept AI technology. Gastroenterology, by its nature of being an image-based and intervention-heavy specialty, is an area where AI-assisted diagnosis and management can be applied extensively. </sec> <sec> <title>OBJECTIVE</title> To study how gastroenterologists/GI (gastrointestinal) surgeons accept and trust the use of AI in detection (CADe), characterization (CADx) and intervention (CADi) of colorectal polyps in colonoscopy. </sec> <sec> <title>METHODS</title> We conducted an online questionnaire from November 2022 to January 2023, involving 5 countries/areas in the Asia-Pacific region (APR). The questionnaire included variables such as background and demography of users, intention to use AI, perceived risk, acceptance and trust in AI-assisted detection and characterization and intervention. We presented participants with three AI scenarios relating to colonoscopy and management of colorectal polyps. These scenarios reflect existing AI applications in colonoscopy namely detection of polyps (CADe), characterization of polyps (CADx), and AI-assisted polypectomy (CADi). </sec> <sec> <title>RESULTS</title> 165 gastroenterologists and GI surgeons responded to an online survey using the structured questionnaire designed by experts in medical communications. Participants have a mean age of 44 ± 9.65 years, are majority male (n=116, 70.30%) and mostly working in publicly funded hospitals (n=110, 66.67%). Participants reported relatively high exposure to AI, with 111 (67.27%) reporting having used AI for clinical diagnosis or treatment of digestive diseases. Gastroenterologists are highly interested to use AI in diagnosis but show different levels of reservations in risk prediction and acceptance of AI. 112 participants (72.72%) also expressed interest to use AI in their future practice. CADe was accepted by 83.03% (n=137), CADx by 78.79% (n=130), and CADi by 72.12% (n=119) of respondents. CADe & CADx were trusted by 85.45% (n=141), CADi by 72.12% (n=119) of respondents. There are no application-specific differences in risk perceptions, but the more experienced clinicians gave lesser risk ratings. </sec> <sec> <title>CONCLUSIONS</title> Gastroenterologists have an overall high acceptance and trust levels of using AI-assisted colonoscopy in the management of colorectal polyps. However, the relationship between risk perception, acceptance, and trust of using AI in gastroenterology practice is not straightforward. </sec>" @default.
- W4384029023 created "2023-07-13" @default.
- W4384029023 creator A5005706767 @default.
- W4384029023 creator A5022313037 @default.
- W4384029023 creator A5042114989 @default.
- W4384029023 creator A5048612260 @default.
- W4384029023 creator A5049274840 @default.
- W4384029023 creator A5054040512 @default.
- W4384029023 creator A5056606929 @default.
- W4384029023 creator A5057988975 @default.
- W4384029023 creator A5071816278 @default.
- W4384029023 creator A5072741575 @default.
- W4384029023 creator A5076035375 @default.
- W4384029023 creator A5084903636 @default.
- W4384029023 creator A5088408965 @default.
- W4384029023 creator A5090152258 @default.
- W4384029023 creator A5092452480 @default.
- W4384029023 date "2023-07-05" @default.
- W4384029023 modified "2023-10-18" @default.
- W4384029023 title "Risk Perception, Acceptance and Trust of Using Artificial Intelligence in Gastroenterology Practice: Survey from the Asia-Pacific Region (Preprint)" @default.
- W4384029023 cites W2142175015 @default.
- W4384029023 cites W2148215741 @default.
- W4384029023 cites W2911979540 @default.
- W4384029023 cites W2995887567 @default.
- W4384029023 cites W3030009436 @default.
- W4384029023 cites W3036458852 @default.
- W4384029023 cites W3123480017 @default.
- W4384029023 cites W3210400866 @default.
- W4384029023 cites W4214569791 @default.
- W4384029023 cites W4214695015 @default.
- W4384029023 cites W4220844101 @default.
- W4384029023 cites W4280528360 @default.
- W4384029023 cites W4289339623 @default.
- W4384029023 cites W4290660011 @default.
- W4384029023 cites W4293740506 @default.
- W4384029023 cites W4302009174 @default.
- W4384029023 cites W4308730821 @default.
- W4384029023 doi "https://doi.org/10.2196/preprints.50525" @default.
- W4384029023 hasPublicationYear "2023" @default.
- W4384029023 type Work @default.
- W4384029023 citedByCount "0" @default.
- W4384029023 crossrefType "posted-content" @default.
- W4384029023 hasAuthorship W4384029023A5005706767 @default.
- W4384029023 hasAuthorship W4384029023A5022313037 @default.
- W4384029023 hasAuthorship W4384029023A5042114989 @default.
- W4384029023 hasAuthorship W4384029023A5048612260 @default.
- W4384029023 hasAuthorship W4384029023A5049274840 @default.
- W4384029023 hasAuthorship W4384029023A5054040512 @default.
- W4384029023 hasAuthorship W4384029023A5056606929 @default.
- W4384029023 hasAuthorship W4384029023A5057988975 @default.
- W4384029023 hasAuthorship W4384029023A5071816278 @default.
- W4384029023 hasAuthorship W4384029023A5072741575 @default.
- W4384029023 hasAuthorship W4384029023A5076035375 @default.
- W4384029023 hasAuthorship W4384029023A5084903636 @default.
- W4384029023 hasAuthorship W4384029023A5088408965 @default.
- W4384029023 hasAuthorship W4384029023A5090152258 @default.
- W4384029023 hasAuthorship W4384029023A5092452480 @default.
- W4384029023 hasConcept C121608353 @default.
- W4384029023 hasConcept C126322002 @default.
- W4384029023 hasConcept C159110408 @default.
- W4384029023 hasConcept C20387591 @default.
- W4384029023 hasConcept C2778435480 @default.
- W4384029023 hasConcept C2780581329 @default.
- W4384029023 hasConcept C2780665704 @default.
- W4384029023 hasConcept C512399662 @default.
- W4384029023 hasConcept C526805850 @default.
- W4384029023 hasConcept C71924100 @default.
- W4384029023 hasConceptScore W4384029023C121608353 @default.
- W4384029023 hasConceptScore W4384029023C126322002 @default.
- W4384029023 hasConceptScore W4384029023C159110408 @default.
- W4384029023 hasConceptScore W4384029023C20387591 @default.
- W4384029023 hasConceptScore W4384029023C2778435480 @default.
- W4384029023 hasConceptScore W4384029023C2780581329 @default.
- W4384029023 hasConceptScore W4384029023C2780665704 @default.
- W4384029023 hasConceptScore W4384029023C512399662 @default.
- W4384029023 hasConceptScore W4384029023C526805850 @default.
- W4384029023 hasConceptScore W4384029023C71924100 @default.
- W4384029023 hasLocation W43840290231 @default.
- W4384029023 hasOpenAccess W4384029023 @default.
- W4384029023 hasPrimaryLocation W43840290231 @default.
- W4384029023 hasRelatedWork W1992963386 @default.
- W4384029023 hasRelatedWork W2032561803 @default.
- W4384029023 hasRelatedWork W2048878004 @default.
- W4384029023 hasRelatedWork W2131457705 @default.
- W4384029023 hasRelatedWork W2164921230 @default.
- W4384029023 hasRelatedWork W2170272972 @default.
- W4384029023 hasRelatedWork W2792388353 @default.
- W4384029023 hasRelatedWork W2807326405 @default.
- W4384029023 hasRelatedWork W2899484863 @default.
- W4384029023 hasRelatedWork W3117865238 @default.
- W4384029023 isParatext "false" @default.
- W4384029023 isRetracted "false" @default.
- W4384029023 workType "article" @default.