Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384037107> ?p ?o ?g. }
- W4384037107 endingPage "827" @default.
- W4384037107 startingPage "827" @default.
- W4384037107 abstract "In recent years, there has been a rise in the prevalence of autism spectrum disorder (ASD). The diagnosis of ASD requires behavioral observation and standardized testing completed by highly trained experts. Early intervention for ASD can begin as early as 1-2 years of age, but ASD diagnoses are not typically made until ages 2-5 years, thus delaying the start of intervention. There is an urgent need for non-invasive biomarkers to detect ASD in infancy. While previous research using physiological recordings has focused on brain-based biomarkers of ASD, this study investigated the potential of electrocardiogram (ECG) recordings as an ASD biomarker in 3-6-month-old infants. We recorded the heart activity of infants at typical and elevated familial likelihood for ASD during naturalistic interactions with objects and caregivers. After obtaining the ECG signals, features such as heart rate variability (HRV) and sympathetic and parasympathetic activities were extracted. Then we evaluated the effectiveness of multiple machine learning classifiers for classifying ASD likelihood. Our findings support our hypothesis that infant ECG signals contain important information about ASD familial likelihood. Amongthe various machine learning algorithms tested, KNN performed best according to sensitivity (0.70 ± 0.117), F1-score (0.689 ± 0.124), precision (0.717 ± 0.128), accuracy (0.70 ± 0.117, p-value = 0.02), and ROC (0.686 ± 0.122, p-value = 0.06). These results suggest that ECG signals contain relevant information about the likelihood of an infant developing ASD. Future studies should consider the potential of information contained in ECG, and other indices of autonomic control, for the development of biomarkers of ASD in infancy." @default.
- W4384037107 created "2023-07-13" @default.
- W4384037107 creator A5023838378 @default.
- W4384037107 creator A5049245681 @default.
- W4384037107 creator A5058815748 @default.
- W4384037107 creator A5081475746 @default.
- W4384037107 date "2023-07-11" @default.
- W4384037107 modified "2023-09-25" @default.
- W4384037107 title "ECG Recordings as Predictors of Very Early Autism Likelihood: A Machine Learning Approach" @default.
- W4384037107 cites W1894178656 @default.
- W4384037107 cites W1929108078 @default.
- W4384037107 cites W1963736913 @default.
- W4384037107 cites W1984657741 @default.
- W4384037107 cites W2003446158 @default.
- W4384037107 cites W2008275147 @default.
- W4384037107 cites W2038865193 @default.
- W4384037107 cites W2049241600 @default.
- W4384037107 cites W2058581888 @default.
- W4384037107 cites W2080883821 @default.
- W4384037107 cites W2104349831 @default.
- W4384037107 cites W2106008538 @default.
- W4384037107 cites W2120186473 @default.
- W4384037107 cites W2127364835 @default.
- W4384037107 cites W2140904217 @default.
- W4384037107 cites W2144696231 @default.
- W4384037107 cites W2146907312 @default.
- W4384037107 cites W2155653793 @default.
- W4384037107 cites W2191720120 @default.
- W4384037107 cites W2299693096 @default.
- W4384037107 cites W2415442616 @default.
- W4384037107 cites W2612893437 @default.
- W4384037107 cites W2743056881 @default.
- W4384037107 cites W2759190050 @default.
- W4384037107 cites W2794910121 @default.
- W4384037107 cites W2802658170 @default.
- W4384037107 cites W2802719250 @default.
- W4384037107 cites W2808918507 @default.
- W4384037107 cites W2888826705 @default.
- W4384037107 cites W2904945048 @default.
- W4384037107 cites W2911964244 @default.
- W4384037107 cites W2917871264 @default.
- W4384037107 cites W2922013303 @default.
- W4384037107 cites W2922177855 @default.
- W4384037107 cites W2944687412 @default.
- W4384037107 cites W2967016014 @default.
- W4384037107 cites W2969891182 @default.
- W4384037107 cites W2971998230 @default.
- W4384037107 cites W2973347070 @default.
- W4384037107 cites W2977582011 @default.
- W4384037107 cites W2990504128 @default.
- W4384037107 cites W3040037724 @default.
- W4384037107 cites W3049138201 @default.
- W4384037107 cites W3082801777 @default.
- W4384037107 cites W3092986059 @default.
- W4384037107 cites W3105245353 @default.
- W4384037107 cites W3113060580 @default.
- W4384037107 cites W3118725379 @default.
- W4384037107 cites W3124682529 @default.
- W4384037107 cites W3127637041 @default.
- W4384037107 cites W3168708700 @default.
- W4384037107 cites W3170134259 @default.
- W4384037107 cites W4229927432 @default.
- W4384037107 cites W4284696810 @default.
- W4384037107 cites W4286751445 @default.
- W4384037107 cites W4327614113 @default.
- W4384037107 cites W571200655 @default.
- W4384037107 doi "https://doi.org/10.3390/bioengineering10070827" @default.
- W4384037107 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37508854" @default.
- W4384037107 hasPublicationYear "2023" @default.
- W4384037107 type Work @default.
- W4384037107 citedByCount "0" @default.
- W4384037107 crossrefType "journal-article" @default.
- W4384037107 hasAuthorship W4384037107A5023838378 @default.
- W4384037107 hasAuthorship W4384037107A5049245681 @default.
- W4384037107 hasAuthorship W4384037107A5058815748 @default.
- W4384037107 hasAuthorship W4384037107A5081475746 @default.
- W4384037107 hasBestOaLocation W43840371071 @default.
- W4384037107 hasConcept C119857082 @default.
- W4384037107 hasConcept C138496976 @default.
- W4384037107 hasConcept C144494922 @default.
- W4384037107 hasConcept C154945302 @default.
- W4384037107 hasConcept C15744967 @default.
- W4384037107 hasConcept C185592680 @default.
- W4384037107 hasConcept C205778803 @default.
- W4384037107 hasConcept C2778538070 @default.
- W4384037107 hasConcept C2781197716 @default.
- W4384037107 hasConcept C41008148 @default.
- W4384037107 hasConcept C548259974 @default.
- W4384037107 hasConcept C55493867 @default.
- W4384037107 hasConcept C58471807 @default.
- W4384037107 hasConcept C71924100 @default.
- W4384037107 hasConceptScore W4384037107C119857082 @default.
- W4384037107 hasConceptScore W4384037107C138496976 @default.
- W4384037107 hasConceptScore W4384037107C144494922 @default.
- W4384037107 hasConceptScore W4384037107C154945302 @default.
- W4384037107 hasConceptScore W4384037107C15744967 @default.
- W4384037107 hasConceptScore W4384037107C185592680 @default.
- W4384037107 hasConceptScore W4384037107C205778803 @default.