Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384037145> ?p ?o ?g. }
- W4384037145 endingPage "828" @default.
- W4384037145 startingPage "828" @default.
- W4384037145 abstract "This study aims to investigate the reliability of radiomic features extracted from contrast-enhanced computer tomography (CT) by AX-Unet, a pancreas segmentation model, to analyse the recurrence of pancreatic ductal adenocarcinoma (PDAC) after radical surgery. In this study, we trained an AX-Unet model to extract the radiomic features from preoperative contrast-enhanced CT images on a training set of 205 PDAC patients. Then we evaluated the segmentation ability of AX-Unet and the relationship between radiomic features and clinical characteristics on an independent testing set of 64 patients with clear prognoses. The lasso regression analysis was used to screen for variables of interest affecting patients' post-operative recurrence, and the Cox proportional risk model regression analysis was used to screen for risk factors and create a nomogram prediction model. The proposed model achieved an accuracy of 85.9% for pancreas segmentation, meeting the requirements of most clinical applications. Radiomic features were found to be significantly correlated with clinical characteristics such as lymph node metastasis, resectability status, and abnormally elevated serum carbohydrate antigen 19-9 (CA 19-9) levels. Specifically, variance and entropy were associated with the recurrence rate (p < 0.05). The AUC for the nomogram predicting whether the patient recurred after surgery was 0.92 (95% CI: 0.78-0.99) and the C index was 0.62 (95% CI: 0.48-0.78). The AX-Unet pancreas segmentation model shows promise in analysing recurrence risk factors after radical surgery for PDAC. Additionally, our findings suggest that a dynamic nomogram model based on AX-Unet can provide pancreatic oncologists with more accurate prognostic assessments for their patients." @default.
- W4384037145 created "2023-07-13" @default.
- W4384037145 creator A5001668691 @default.
- W4384037145 creator A5008153291 @default.
- W4384037145 creator A5015640756 @default.
- W4384037145 creator A5023613911 @default.
- W4384037145 creator A5031339022 @default.
- W4384037145 creator A5060058201 @default.
- W4384037145 creator A5071798264 @default.
- W4384037145 creator A5074672910 @default.
- W4384037145 creator A5079527887 @default.
- W4384037145 creator A5088486032 @default.
- W4384037145 date "2023-07-11" @default.
- W4384037145 modified "2023-09-26" @default.
- W4384037145 title "Predicting Recurrence in Pancreatic Ductal Adenocarcinoma after Radical Surgery Using an AX-Unet Pancreas Segmentation Model and Dynamic Nomogram" @default.
- W4384037145 cites W1995031544 @default.
- W4384037145 cites W2076516312 @default.
- W4384037145 cites W2327072410 @default.
- W4384037145 cites W2412782625 @default.
- W4384037145 cites W2527779998 @default.
- W4384037145 cites W2531409750 @default.
- W4384037145 cites W2741593353 @default.
- W4384037145 cites W2781613846 @default.
- W4384037145 cites W2790192191 @default.
- W4384037145 cites W2798100913 @default.
- W4384037145 cites W2799783533 @default.
- W4384037145 cites W2885326465 @default.
- W4384037145 cites W2887482411 @default.
- W4384037145 cites W2889730211 @default.
- W4384037145 cites W2903051249 @default.
- W4384037145 cites W2915958941 @default.
- W4384037145 cites W2934708523 @default.
- W4384037145 cites W2973867667 @default.
- W4384037145 cites W3000099925 @default.
- W4384037145 cites W3005177059 @default.
- W4384037145 cites W3011818425 @default.
- W4384037145 cites W3026830572 @default.
- W4384037145 cites W3030432638 @default.
- W4384037145 cites W3049692891 @default.
- W4384037145 cites W3082918912 @default.
- W4384037145 cites W3092612121 @default.
- W4384037145 cites W3104390926 @default.
- W4384037145 cites W3112701542 @default.
- W4384037145 cites W3116069713 @default.
- W4384037145 cites W3118660027 @default.
- W4384037145 cites W3127316871 @default.
- W4384037145 cites W3132674558 @default.
- W4384037145 cites W3146066076 @default.
- W4384037145 cites W3159063014 @default.
- W4384037145 cites W3159897537 @default.
- W4384037145 cites W3172681723 @default.
- W4384037145 cites W3175915522 @default.
- W4384037145 cites W3183248097 @default.
- W4384037145 cites W3185880464 @default.
- W4384037145 cites W3206985657 @default.
- W4384037145 cites W377632744 @default.
- W4384037145 cites W4206735871 @default.
- W4384037145 cites W4206841660 @default.
- W4384037145 cites W4212926003 @default.
- W4384037145 cites W4214679508 @default.
- W4384037145 cites W4220820318 @default.
- W4384037145 cites W4281554992 @default.
- W4384037145 cites W4281717414 @default.
- W4384037145 cites W4288036832 @default.
- W4384037145 cites W4298149625 @default.
- W4384037145 cites W4319761577 @default.
- W4384037145 doi "https://doi.org/10.3390/bioengineering10070828" @default.
- W4384037145 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37508855" @default.
- W4384037145 hasPublicationYear "2023" @default.
- W4384037145 type Work @default.
- W4384037145 citedByCount "0" @default.
- W4384037145 crossrefType "journal-article" @default.
- W4384037145 hasAuthorship W4384037145A5001668691 @default.
- W4384037145 hasAuthorship W4384037145A5008153291 @default.
- W4384037145 hasAuthorship W4384037145A5015640756 @default.
- W4384037145 hasAuthorship W4384037145A5023613911 @default.
- W4384037145 hasAuthorship W4384037145A5031339022 @default.
- W4384037145 hasAuthorship W4384037145A5060058201 @default.
- W4384037145 hasAuthorship W4384037145A5071798264 @default.
- W4384037145 hasAuthorship W4384037145A5074672910 @default.
- W4384037145 hasAuthorship W4384037145A5079527887 @default.
- W4384037145 hasAuthorship W4384037145A5088486032 @default.
- W4384037145 hasBestOaLocation W43840371451 @default.
- W4384037145 hasConcept C121608353 @default.
- W4384037145 hasConcept C126322002 @default.
- W4384037145 hasConcept C126838900 @default.
- W4384037145 hasConcept C143998085 @default.
- W4384037145 hasConcept C154945302 @default.
- W4384037145 hasConcept C2778764654 @default.
- W4384037145 hasConcept C2780210213 @default.
- W4384037145 hasConcept C2992026798 @default.
- W4384037145 hasConcept C34626388 @default.
- W4384037145 hasConcept C41008148 @default.
- W4384037145 hasConcept C50382708 @default.
- W4384037145 hasConcept C71924100 @default.
- W4384037145 hasConcept C89600930 @default.
- W4384037145 hasConceptScore W4384037145C121608353 @default.
- W4384037145 hasConceptScore W4384037145C126322002 @default.