Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384037996> ?p ?o ?g. }
- W4384037996 endingPage "8099" @default.
- W4384037996 startingPage "8099" @default.
- W4384037996 abstract "This review article explores the applications and impacts of Machine Learning (ML) techniques in marine traffic management and prediction within complex maritime systems. It provides an overview of ML techniques, delves into their practical applications in the maritime sector, and presents an in-depth analysis of their benefits and limitations. Real-world case studies are highlighted to illustrate the transformational impact of ML in this field. The article further provides a comparative analysis of different ML techniques and discusses the future directions and opportunities that lie ahead. Despite the challenges, ML’s potential to revolutionize marine traffic management and prediction, driving safer, more efficient, and more sustainable operations, is substantial. This review article serves as a comprehensive resource for researchers, industry professionals, and policymakers interested in the interplay between ML and maritime systems." @default.
- W4384037996 created "2023-07-13" @default.
- W4384037996 creator A5028449371 @default.
- W4384037996 creator A5033212046 @default.
- W4384037996 creator A5057835446 @default.
- W4384037996 creator A5066436652 @default.
- W4384037996 creator A5092453233 @default.
- W4384037996 date "2023-07-11" @default.
- W4384037996 modified "2023-09-25" @default.
- W4384037996 title "Revolutionizing Marine Traffic Management: A Comprehensive Review of Machine Learning Applications in Complex Maritime Systems" @default.
- W4384037996 cites W2003219584 @default.
- W4384037996 cites W2512403973 @default.
- W4384037996 cites W2520896565 @default.
- W4384037996 cites W2584807945 @default.
- W4384037996 cites W2802042319 @default.
- W4384037996 cites W2891814210 @default.
- W4384037996 cites W2902297500 @default.
- W4384037996 cites W2949433119 @default.
- W4384037996 cites W2971264769 @default.
- W4384037996 cites W2990261527 @default.
- W4384037996 cites W3001095453 @default.
- W4384037996 cites W3011528209 @default.
- W4384037996 cites W3012815794 @default.
- W4384037996 cites W3025161810 @default.
- W4384037996 cites W3028834207 @default.
- W4384037996 cites W3034699081 @default.
- W4384037996 cites W3035789477 @default.
- W4384037996 cites W3044352327 @default.
- W4384037996 cites W3046571069 @default.
- W4384037996 cites W3099543516 @default.
- W4384037996 cites W3131289310 @default.
- W4384037996 cites W3139774562 @default.
- W4384037996 cites W3162651833 @default.
- W4384037996 cites W3175329478 @default.
- W4384037996 cites W3189286258 @default.
- W4384037996 cites W3194722126 @default.
- W4384037996 cites W3200707343 @default.
- W4384037996 cites W3203175292 @default.
- W4384037996 cites W3217282855 @default.
- W4384037996 cites W4200204151 @default.
- W4384037996 cites W4206842905 @default.
- W4384037996 cites W4214822458 @default.
- W4384037996 cites W4220837725 @default.
- W4384037996 cites W4223421225 @default.
- W4384037996 cites W4283701201 @default.
- W4384037996 cites W4288051329 @default.
- W4384037996 cites W4289866046 @default.
- W4384037996 cites W4292641515 @default.
- W4384037996 cites W4296841405 @default.
- W4384037996 cites W4308872119 @default.
- W4384037996 cites W4312127557 @default.
- W4384037996 cites W4319222145 @default.
- W4384037996 cites W4319744388 @default.
- W4384037996 cites W4320725963 @default.
- W4384037996 doi "https://doi.org/10.3390/app13148099" @default.
- W4384037996 hasPublicationYear "2023" @default.
- W4384037996 type Work @default.
- W4384037996 citedByCount "0" @default.
- W4384037996 crossrefType "journal-article" @default.
- W4384037996 hasAuthorship W4384037996A5028449371 @default.
- W4384037996 hasAuthorship W4384037996A5033212046 @default.
- W4384037996 hasAuthorship W4384037996A5057835446 @default.
- W4384037996 hasAuthorship W4384037996A5066436652 @default.
- W4384037996 hasAuthorship W4384037996A5092453233 @default.
- W4384037996 hasBestOaLocation W43840379961 @default.
- W4384037996 hasConcept C112930515 @default.
- W4384037996 hasConcept C127413603 @default.
- W4384037996 hasConcept C144133560 @default.
- W4384037996 hasConcept C17744445 @default.
- W4384037996 hasConcept C202444582 @default.
- W4384037996 hasConcept C2776654903 @default.
- W4384037996 hasConcept C33923547 @default.
- W4384037996 hasConcept C38652104 @default.
- W4384037996 hasConcept C38775462 @default.
- W4384037996 hasConcept C39549134 @default.
- W4384037996 hasConcept C41008148 @default.
- W4384037996 hasConcept C539667460 @default.
- W4384037996 hasConcept C9652623 @default.
- W4384037996 hasConceptScore W4384037996C112930515 @default.
- W4384037996 hasConceptScore W4384037996C127413603 @default.
- W4384037996 hasConceptScore W4384037996C144133560 @default.
- W4384037996 hasConceptScore W4384037996C17744445 @default.
- W4384037996 hasConceptScore W4384037996C202444582 @default.
- W4384037996 hasConceptScore W4384037996C2776654903 @default.
- W4384037996 hasConceptScore W4384037996C33923547 @default.
- W4384037996 hasConceptScore W4384037996C38652104 @default.
- W4384037996 hasConceptScore W4384037996C38775462 @default.
- W4384037996 hasConceptScore W4384037996C39549134 @default.
- W4384037996 hasConceptScore W4384037996C41008148 @default.
- W4384037996 hasConceptScore W4384037996C539667460 @default.
- W4384037996 hasConceptScore W4384037996C9652623 @default.
- W4384037996 hasIssue "14" @default.
- W4384037996 hasLocation W43840379961 @default.
- W4384037996 hasOpenAccess W4384037996 @default.
- W4384037996 hasPrimaryLocation W43840379961 @default.
- W4384037996 hasRelatedWork W1498800420 @default.
- W4384037996 hasRelatedWork W1515663861 @default.
- W4384037996 hasRelatedWork W2007572891 @default.