Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384039148> ?p ?o ?g. }
- W4384039148 endingPage "6318" @default.
- W4384039148 startingPage "6318" @default.
- W4384039148 abstract "The construction industry is accident-prone, and unsafe behaviors of construction workers have been identified as a leading cause of accidents. One important countermeasure to prevent accidents is monitoring and managing those unsafe behaviors. The most popular way of detecting and identifying workers' unsafe behaviors is the computer vision-based intelligent monitoring system. However, most of the existing research or products focused only on the workers' behaviors (i.e., motions) recognition, limited studies considered the interaction between man-machine, man-material or man-environments. Those interactions are very important for judging whether the workers' behaviors are safe or not, from the standpoint of safety management. This study aims to develop a new method of identifying construction workers' unsafe behaviors, i.e., unsafe interaction between man-machine/material, based on ST-GCN (Spatial Temporal Graph Convolutional Networks) and YOLO (You Only Look Once), which could provide more direct and valuable information for safety management. In this study, two trained YOLO-based models were, respectively, used to detect safety signs in the workplace, and objects that interacted with workers. Then, an ST-GCN model was trained to detect and identify workers' behaviors. Lastly, a decision algorithm was developed considering interactions between man-machine/material, based on YOLO and ST-GCN results. Results show good performance of the developed method, compared to only using ST-GCN, the accuracy was significantly improved from 51.79% to 85.71%, 61.61% to 99.11%, and 58.04% to 100.00%, respectively, in the identification of the following three kinds of behaviors, throwing (throwing hammer, throwing bottle), operating (turning on switch, putting bottle), and crossing (crossing railing and crossing obstacle). The findings of the study have some practical implications for safety management, especially workers' behavior monitoring and management." @default.
- W4384039148 created "2023-07-13" @default.
- W4384039148 creator A5004890107 @default.
- W4384039148 creator A5017954832 @default.
- W4384039148 creator A5060728061 @default.
- W4384039148 creator A5073854009 @default.
- W4384039148 date "2023-07-11" @default.
- W4384039148 modified "2023-09-26" @default.
- W4384039148 title "Study on the Interaction Behaviors Identification of Construction Workers Based on ST-GCN and YOLO" @default.
- W4384039148 cites W1536680647 @default.
- W4384039148 cites W2018527109 @default.
- W4384039148 cites W2019699137 @default.
- W4384039148 cites W2036196300 @default.
- W4384039148 cites W2060280062 @default.
- W4384039148 cites W2102605133 @default.
- W4384039148 cites W2201140629 @default.
- W4384039148 cites W2541577353 @default.
- W4384039148 cites W2570343428 @default.
- W4384039148 cites W2740820438 @default.
- W4384039148 cites W2768148056 @default.
- W4384039148 cites W2790722345 @default.
- W4384039148 cites W2803429134 @default.
- W4384039148 cites W2898675200 @default.
- W4384039148 cites W2903920459 @default.
- W4384039148 cites W2909074876 @default.
- W4384039148 cites W2944829616 @default.
- W4384039148 cites W2948058585 @default.
- W4384039148 cites W2948246283 @default.
- W4384039148 cites W2948772613 @default.
- W4384039148 cites W2955098740 @default.
- W4384039148 cites W2963076818 @default.
- W4384039148 cites W2965020483 @default.
- W4384039148 cites W2999723590 @default.
- W4384039148 cites W3021865040 @default.
- W4384039148 cites W3094968069 @default.
- W4384039148 cites W3105311734 @default.
- W4384039148 cites W3106250896 @default.
- W4384039148 cites W3116566930 @default.
- W4384039148 cites W3119171349 @default.
- W4384039148 cites W3119523940 @default.
- W4384039148 cites W3123220518 @default.
- W4384039148 cites W3132016547 @default.
- W4384039148 cites W3162113798 @default.
- W4384039148 cites W3163510280 @default.
- W4384039148 cites W3169599625 @default.
- W4384039148 cites W3190405265 @default.
- W4384039148 cites W3197307971 @default.
- W4384039148 cites W4200128174 @default.
- W4384039148 cites W4210853077 @default.
- W4384039148 cites W4213433053 @default.
- W4384039148 cites W4224229717 @default.
- W4384039148 cites W4280567443 @default.
- W4384039148 cites W4280593121 @default.
- W4384039148 cites W4281713101 @default.
- W4384039148 cites W4282018436 @default.
- W4384039148 cites W4283027823 @default.
- W4384039148 cites W4289333335 @default.
- W4384039148 cites W4293523214 @default.
- W4384039148 cites W4293541940 @default.
- W4384039148 cites W4293791137 @default.
- W4384039148 cites W4309175865 @default.
- W4384039148 cites W4313648520 @default.
- W4384039148 cites W4316673310 @default.
- W4384039148 cites W4318483486 @default.
- W4384039148 cites W4320809391 @default.
- W4384039148 cites W4321382243 @default.
- W4384039148 cites W4328092711 @default.
- W4384039148 cites W4361218722 @default.
- W4384039148 cites W4375866659 @default.
- W4384039148 doi "https://doi.org/10.3390/s23146318" @default.
- W4384039148 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37514613" @default.
- W4384039148 hasPublicationYear "2023" @default.
- W4384039148 type Work @default.
- W4384039148 citedByCount "0" @default.
- W4384039148 crossrefType "journal-article" @default.
- W4384039148 hasAuthorship W4384039148A5004890107 @default.
- W4384039148 hasAuthorship W4384039148A5017954832 @default.
- W4384039148 hasAuthorship W4384039148A5060728061 @default.
- W4384039148 hasAuthorship W4384039148A5073854009 @default.
- W4384039148 hasBestOaLocation W43840391481 @default.
- W4384039148 hasConcept C112930515 @default.
- W4384039148 hasConcept C116834253 @default.
- W4384039148 hasConcept C127413603 @default.
- W4384039148 hasConcept C132525143 @default.
- W4384039148 hasConcept C144133560 @default.
- W4384039148 hasConcept C146978453 @default.
- W4384039148 hasConcept C154945302 @default.
- W4384039148 hasConcept C21593369 @default.
- W4384039148 hasConcept C38652104 @default.
- W4384039148 hasConcept C41008148 @default.
- W4384039148 hasConcept C59822182 @default.
- W4384039148 hasConcept C66938386 @default.
- W4384039148 hasConcept C80444323 @default.
- W4384039148 hasConcept C86803240 @default.
- W4384039148 hasConcept C86804380 @default.
- W4384039148 hasConceptScore W4384039148C112930515 @default.
- W4384039148 hasConceptScore W4384039148C116834253 @default.
- W4384039148 hasConceptScore W4384039148C127413603 @default.