Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384039652> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4384039652 endingPage "3485" @default.
- W4384039652 startingPage "3485" @default.
- W4384039652 abstract "Coastal erosion due to extreme events can cause significant damage to coastal communities and deplete beaches. Post-storm beach recovery is a crucial natural process that rebuilds coastal morphology and reintroduces eroded sediment to the subaerial beach. However, monitoring the beach recovery, which occurs at various spatiotemporal scales, presents a significant challenge. This is due to, firstly, the complex interplay between factors such as storm-induced erosion, sediment availability, local topography, and wave and wind-driven sand transport; secondly, the complex morphology of coastal areas, where water, sand, debris and vegetation co-exists dynamically; and, finally, the challenging weather conditions affecting the long-term small-scale data acquisition needed to monitor the recovery process. This complexity hinders our understanding and effective management of coastal vulnerability and resilience. In this study, we apply Convolutional Neural Networks (CNN)-based semantic segmentation to high-resolution complex beach imagery. This model efficiently distinguishes between various features indicative of coastal processes, including sand texture, water content, debris, and vegetation with a mean precision of 95.1% and mean Intersection of Union (IOU) of 86.7%. Furthermore, we propose a new method to quantify false positives and negatives that allows a reliable estimation of the model’s uncertainty in the absence of a ground truth to validate the model predictions. This method is particularly effective in scenarios where the boundaries between classes are not clearly defined. We also discuss how to identify blurry beach images in advance of semantic segmentation prediction, as our model is less effective at predicting this type of image. By examining how different beach regions evolve over time through time series analysis, we discovered that rare events of wind-driven (aeolian) sand transport seem to play a crucial role in promoting the vertical growth of beaches and thus driving the beach recovery process." @default.
- W4384039652 created "2023-07-13" @default.
- W4384039652 creator A5003085552 @default.
- W4384039652 creator A5014563333 @default.
- W4384039652 date "2023-07-11" @default.
- W4384039652 modified "2023-09-25" @default.
- W4384039652 title "The Application of CNN-Based Image Segmentation for Tracking Coastal Erosion and Post-Storm Recovery" @default.
- W4384039652 cites W1903029394 @default.
- W4384039652 cites W1965475047 @default.
- W4384039652 cites W1990592195 @default.
- W4384039652 cites W2024685352 @default.
- W4384039652 cites W2025963304 @default.
- W4384039652 cites W2079191334 @default.
- W4384039652 cites W2147800946 @default.
- W4384039652 cites W2168321673 @default.
- W4384039652 cites W2346457505 @default.
- W4384039652 cites W2984989281 @default.
- W4384039652 cites W3106850242 @default.
- W4384039652 cites W3121980277 @default.
- W4384039652 cites W3128351728 @default.
- W4384039652 cites W3196374756 @default.
- W4384039652 cites W3212623172 @default.
- W4384039652 cites W4280592903 @default.
- W4384039652 cites W4283722470 @default.
- W4384039652 cites W4317565687 @default.
- W4384039652 cites W4360610776 @default.
- W4384039652 doi "https://doi.org/10.3390/rs15143485" @default.
- W4384039652 hasPublicationYear "2023" @default.
- W4384039652 type Work @default.
- W4384039652 citedByCount "0" @default.
- W4384039652 crossrefType "journal-article" @default.
- W4384039652 hasAuthorship W4384039652A5003085552 @default.
- W4384039652 hasAuthorship W4384039652A5014563333 @default.
- W4384039652 hasBestOaLocation W43840396521 @default.
- W4384039652 hasConcept C105306849 @default.
- W4384039652 hasConcept C111368507 @default.
- W4384039652 hasConcept C114793014 @default.
- W4384039652 hasConcept C123157820 @default.
- W4384039652 hasConcept C127313418 @default.
- W4384039652 hasConcept C154261466 @default.
- W4384039652 hasConcept C39432304 @default.
- W4384039652 hasConcept C41008148 @default.
- W4384039652 hasConcept C62649853 @default.
- W4384039652 hasConceptScore W4384039652C105306849 @default.
- W4384039652 hasConceptScore W4384039652C111368507 @default.
- W4384039652 hasConceptScore W4384039652C114793014 @default.
- W4384039652 hasConceptScore W4384039652C123157820 @default.
- W4384039652 hasConceptScore W4384039652C127313418 @default.
- W4384039652 hasConceptScore W4384039652C154261466 @default.
- W4384039652 hasConceptScore W4384039652C39432304 @default.
- W4384039652 hasConceptScore W4384039652C41008148 @default.
- W4384039652 hasConceptScore W4384039652C62649853 @default.
- W4384039652 hasIssue "14" @default.
- W4384039652 hasLocation W43840396521 @default.
- W4384039652 hasLocation W43840396522 @default.
- W4384039652 hasOpenAccess W4384039652 @default.
- W4384039652 hasPrimaryLocation W43840396521 @default.
- W4384039652 hasRelatedWork W1994288285 @default.
- W4384039652 hasRelatedWork W2004833980 @default.
- W4384039652 hasRelatedWork W2161335487 @default.
- W4384039652 hasRelatedWork W2315937760 @default.
- W4384039652 hasRelatedWork W2374562802 @default.
- W4384039652 hasRelatedWork W2488322884 @default.
- W4384039652 hasRelatedWork W2604877161 @default.
- W4384039652 hasRelatedWork W2728583233 @default.
- W4384039652 hasRelatedWork W3126739273 @default.
- W4384039652 hasRelatedWork W4283799411 @default.
- W4384039652 hasVolume "15" @default.
- W4384039652 isParatext "false" @default.
- W4384039652 isRetracted "false" @default.
- W4384039652 workType "article" @default.